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ABSTRACT 

Background: The spike protein (SP) is an outward-projecting transmembrane glycoprotein on 

viral surfaces. SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), responsible 

for COVID-19 (Coronavirus Disease 2019), uses SP to infect cells that express angiotensin 

converting enzyme 2 (ACE2) on their membrane. Remarkably, SP has the ability to cross the 

blood-brain barrier (BBB) into the brain and cause cerebral damage through various 

pathomechanisms. To combat the COVID-19 pandemic, novel gene-based products have been 

used worldwide to induce human body cells to produce SP to stimulate the immune system. 

This artificial SP also has a harmful effect on the human nervous system. 

Study design: Narrative review. 
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Objective: This narrative review presents the crucial role of SP in neurological complaints after 

SARS-CoV-2 infection, but also of SP derived from novel gene-based anti-SARS-CoV-2 products 

(ASP). 

Methods: Literature searches using broad terms such as "SARS-CoV-2", "spike protein", 

"COVID-19", "COVID-19 pandemic", "vaccines", "COVID-19 vaccines", "post-vaccination 

syndrome", "post-COVID-19 vaccination syndrome" and "proteinopathy" were performed 

using PubMed. Google Scholar was used to search for topic-specific full-text keywords. 

Conclusions: The toxic properties of SP presented in this review provide a good explanation 

for many of the neurological symptoms following SARS-CoV-2 infection and after injection of 

SP-producing ASP. Both SP entities (from infection and injection) interfere, among others, with 

ACE2 and act on different cells, tissues and organs. Both SPs are able to cross the BBB and can 

trigger acute and chronic neurological complaints. Such SP-associated pathologies 

(spikeopathies) are further neurological proteinopathies with thrombogenic, neurotoxic, 

neuroinflammatory and neurodegenerative potential for the human nervous system, 

particularly the central nervous system. The potential neurotoxicity of SP from ASP needs to 

be critically examined, as ASPs have been administered to millions of people worldwide. 

Keywords: SARS-CoV-2, spike protein, COVID-19, COVID-19 vaccines, proteinopathy 

1. SARS-CoV-2 – Severe Acute Respiratory Syndrome Coronavirus 2 

1.1. SARS-CoV-2: A new coronavirus 

     SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2; genus: Betacoronavirus (Li 

et al., 2021a)) was discovered at the end of December 2019 in Wuhan, the capital of Hubei 

Province in central China (Tang et al., 2020), and is held responsible for COVID-19 (Coronavirus 

Disease 2019) (Theoharides and Kempuraj, 2023) and the pandemic declaration by the World 
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Health Organization (WHO) on 11 March 2020 (Mistry et al., 2022). The complete genome 

sequence of SARS-CoV-2 showed a high nucleotide identity to bat SARS-related coronaviruses 

(RaTG13: 96.13% (28720 / 29875) (Paraskevis et al., 2020; Zhou et al., 2020), BANAL-20-52: 

96.85% (28940 / 29881) (Temmam et al., 2022)), but a lower similarity to previous pandemic 

coronaviruses (SARS-CoV-1: about 79%, MERS-CoV: about 50%) (Lu et al., 2020; Gralinski and 

Menachery, 2020). The geographical origin of SARS-CoV-2 is currently located in Southeast 

Asia (Laos, Vietnam) and Southern China (Yunnan Province) (Chen et al., 2024). 

 

1.2. SARS-CoV-2: Special features 

     SARS-CoV-2 differs from other coronaviruses in several unique genomic, phylogenetic and 

structural features (V´kovski et al., 2021). These features mainly concern the spike protein 

(SP), with (1) special structural and mutational features in the (a) S protein receptor binding 

motif (RBM), (b) receptor binding domain (RBD), and (c) fusion domain (Cueno and Imai, 2021; 

Jaimes et al., 2020), (2) unique insertions and enhanced nuclear localisation signals (NLSs) in 

the nucleocapsid protein (Igyártó and Qin, 2024; Sattar et al., 2023), and (3) a unique (among 

all previously known Sarbecovirus strains) (Chen et al., 2024) RRAR sequence in its furin 

cleavage site (FCS) (Kumavath et al., 2021). In addition, SARS-CoV-2 is the only coronavirus 

with a prion-like domain found in the RBD of the S1 region of SP (Tetz and Tetz, 2022). These 

special features in SPs of SARS-CoV-2 are associated with (1) altered host switching from 

animals to humans (Gussow et al., 2020), (2) increased human-to-human transmissibility 

(Coutard et al., 2020), (3) altered ability to bind to angiotensin-converting enzyme 2 (ACE2) 

(Cao et al., 2020; Hatmal et al., 2020), (4) increased infectivity (Coutard et al., 2020) and (5) 

increased fatality rate (Gussow et al., 2020). 
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     In addition, SARS-CoV-2 has other unique protein features, particularly in the proteins NSP3 

(non-structural protein 3) and ORF9 (open reading frame 9), which also increase 

transmissibility and infectivity in humans (Cotton et al., 2021). In addition, compared to other 

coronaviruses, SARS-CoV-2 shows an altered activation of the IRE1α/XBP1 signalling pathway 

(endoplasmic reticulum stress signalling pathway; IRE1α: inositol-requiring enzyme 1 α; XBP-

1: X box binding protein 1), which allows it to evade the host organism's immune system 

(Nguyen et al., 2022). In summary, these special, and in some cases unique features of SARS-

CoV-2 influence its transmissibility, infectivity, immune defence and fatality rate. Devaux and 

Fantini (2023) further describe a possible contribution of rare alleles of human ACE2 in the 

emergence of SARS-CoV-2 variants escaping the immune response (Devaux and Fantini; 2023). 

 

1.3. SARS-CoV-2: Spike protein 

     The SPs of SARS-CoV-2 is an outward-projecting transmembrane glycoprotein peplomeric 

structure on the surface of the viral envelope (Cueno and Imai, 2021; Jaimes et al., 2020; Yao 

et al., 2020). It serves as a ligand for docking to the cell surface of the target cell and as a 

fusogenic protein for entry into the target cell (Wal et al., 2022). This aspect was already 

known from other coronaviruses prior to 2020 (Belouzard et al., 2012; Li, 2016). The term 

"spike" refers to the protruding peplomer structure visible under electron microscopy (as in 

coronaviruses, for example), in contrast to viruses that do not have such a prominent surface 

structure (Wrapp et al., 2020; Yao et al., 2020). 

     The SP is a homotrimeric protein (Li et al., 2022a) and one of the four structural proteins of 

SARS-CoV-2 (Wang et al., 2020). There are 15-30 freely rotating homotrimers of SPs on the 

surface of a virion (Kadam et al., 2021). Each of the three identical monomers is cleaved into 
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two subunits (S1 and S2) by proteolysis by a furin-like protease during viral transit (Jackson et 

al., 2021). The S1 subunit is located at the distal, outward-projecting end of SP and consists of 

an N-terminal domain and a trimer of three RBDs (Granados-Riveron and Aquino-Jarquin, 

2021; Mittal et al., 2020; Parry et al., 2023). The S2 subunit consists mainly of a C-terminal 

region that forms the stalk of SP and is embedded proximally in the virus membrane 

(Granados-Riveron and Aquino-Jarquin, 2021; Mittal et al., 2020; Parry et al., 2023) (Fig. 1). 

The FCS in SP is crucial for the binding to and penetration of the virus into host cells (Coutard 

et al., 2020; Hasan et al., 2020; Hoffmann et al., 2020a). As already mentioned, SARS-CoV-2, 

in contrast to other coronaviruses (Chen et al., 2024; Örd et al., 2020), has the sequence RRAR 

on this FCS, which facilitates the cleavage of SP into its two subunits (Kumavath et al., 2021) 

and thus increases the transmissibility and infectivity of SARS-CoV-2 (Coutard et al., 2020). The 

SP determines the host and cell tropism of SARS-CoV-2 (Wang et al., 2020; Zhu et al., 2021), 

whereby the specific ACE2 binding of SP is achieved via the RBD on S1 (Colunga Biancatelli et 

al., 2021; Jackson et al., 2021). 

 

1.4. SARS-CoV-2: ACE2 binding 

     SARS-CoV-2 (like other coronaviruses) (Petrosillo et al., 2020) uses SPs on its envelope 

surface to infect target cells that express ACE2 on their membrane, which acts as a receptor 

(Bellavite et al., 2023; Theoharides and Kempuraj, 2023). The penetration of SARS-CoV-2 into 

cells is mainly based on the interaction of SP with ACE2 (Bellavite et al., 2023; Jackson et al., 

2021; Lan et al., 2020; Lei et al., 2021; Perrotta et al., 2020; Tai et al., 2020; Zhang et al., 2021) 

(Fig. 2). For cell entry, SARS-CoV-2 would also need a SP priming by the host cell 

transmembrane protease serine subtype 2 (TMPRSS2) (Cao et al., 2020; Hoffmann et al., 

2020b) (Fig. 2). ACE2 occurs in membrane-bound form on various cell types, including upper 
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respiratory and gastrointestinal mucosa, kidney, heart, endothelium, blood vessels, platelets 

and in soluble form in the plasma (Bellavite et al., 2023; Cao et al., 2020; Lamers et al., 2020; 

Ortiz et al., 2020; Verdecchia et al., 2020; Zhang et al., 2020a). According to current 

knowledge, there are multiple interactions between different SP options (soluble vs. cell-

bound; whole protein vs. peptide fragments) and different ACE2 options (soluble vs. cell-

bound) (Trougakos et al., 2022). This can lead to internalisation and degradation of ACE2 

throughout the organism (Deshotels et al., 2014; Gao et al., 2022a; Ramos et al., 2021), with 

destabilising consequences for the renin-angiotensin-aldosterone system (RAAS) (vascular 

and cardiac dysregulation, inflammatory and thrombogenic responses) (Cao et al., 2020; 

Tabarsi et al., 2022a, b; Trougakos et al., 2021; Verdecchia et al., 2020; Zhang et al., 2020a) 

and other body regions (Angeli et al., 2022; Barton et al., 2021; Bellavite et al., 2023; Colunga 

Biancatelli et al., 2021; Partridge et al., 2021; Taka et al., 2020; Zhu et al., 2021a). RAAS plays 

a central role in the human immune response to SARS-CoV-2 by acting on macrophages and 

monocytes, which are essential for proper immune homeostasis (Cao et al., 2020). 

Dysregulation of this ACE2-RAAS axis contributes to various SARS-CoV-2 pathologies, including 

chaotic immune responses (Cao et al., 2020). 

     In addition to its high ACE2 affinity, SP also binds to p53, BP1, and BRCA1 and 2, allowing 

for a wide range of potential biological and carcinogenic interference (Parry et al., 2023; Singh 

and Singh, 2020). Furthermore, SP inhibits various DNA repair processes (Jiang and Mei, 2021), 

with corresponding carcinogenic effects in the mouse model (Lai et al., 2021). Moreover, SPs 

have been shown in cell lines and experimental mouse models to release lipids from 

membranes and interfere with membrane lipid exchange, negatively affecting membrane 

stability (Correa et al., 2021). 

 

Jo
ur

na
l P

re
-p

ro
of



1.5. SARS-CoV-2: Blood-brain barrier permeability 

     Autopsy studies on COVID-19 patients have shown that SARS-CoV-2 infects not only the 

respiratory tract but also other non-respiratory cells, fluids, tissues, vascular endothelia (at 

physiological barriers) and organs, including the brain (Elsoukkary et al., 2021; Schurink et al., 

2020; Stein et al., 2022; Tian et al., 2020; Xu et al., 2020; Yao et al., 2021). Thus, COVID-19 has 

respiratory and non-respiratory manifestations. Although autopsy studies have shown that 

the most common immediate cause of COVID-19 death was diffuse pulmonary alveolar 

damage, followed by multiorgan failure (von Stillfried et al., 2022). Even at the beginning of 

the COVID-19 pandemic, SARS-CoV-2 was detected in the human brain in post-mortem studies 

(Matschke et al., 2020). Olfactory transmucosal SARS-CoV-2 invasion has been described as a 

possible route of entry into the brain (Meinhardt et al., 2021). Further, it has been shown that 

SARS-CoV-2 RNA can persist in the human body for up to 230 days after the onset of COVID-

19 symptoms, including the brain (Stein et al., 2022). The neuronal damage patterns of SARS-

CoV-2 in the brain are diverse, complex (Spudich and Nath, 2022; Varatharaj et al., 2020) and 

have also been described for other coronaviruses (Kase and Okano, 2021). It has been shown 

that SARS-CoV-2 infection causes neuron-neuron, neuron-glia and glia-glia fusion in murine 

hippocampal cultures and in human-derived brain organoids (Martínez-Mármol et al., 2023). 

This fusion impairs neuronal activity and communication and is one mechanism by which 

SARS-CoV-2 damages the nervous system and causes neuropathological disorders (Martínez-

Mármol et al., 2023). Theoharides and Kempuraj (2023) described possible pathomechanisms 

of SARS-CoV-2 associated Neuro-COVID (Theoharides and Kempuraj, 2023). Although SARS-

CoV-2 is primarily considered a respiratory pathogen, it also acts as a neurotropic pathogen. 

Here, immune activation and inflammation within the central nervous system (CNS) are the 

main drivers of neurological diseases in Neuro-COVID (Spudich and Nath, 2022). Autopsy 
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studies of COVID-19 patients show infiltration of macrophages, CD8+ T lymphocytes in 

perivascular regions, and widespread microglial activation throughout the brain (Matschke et 

al., 2020). Interestingly, single-cell analysis of brain tissue demonstrated CD8+ T lymphocyte 

infiltration and microglial activation, but without evidence of viral RNA detection in brain 

parenchyma cells (Fullard et al., 2021). 

     In particular, S1 of SP can cross the blood-brain barrier (BBB) and enter the brain in animal 

studies, as described in 2020 (Rhea et al., 2020). This was also demonstrated in human cell 

culture models, where SP effectively crossed the human brain endothelial cell barrier 

(Petrovszki et al., 2022). Studies in mouse models and human post-mortem tissues have 

shown that SARS-CoV-2 SP accumulates in the cranial skull marrow, brain meninges, and brain 

parenchyma (Rong et al., 2023). The SP crosses the BBB by adsorptive transcytosis (Rhea et 

al., 2020), in which the interaction with ACE2 plays an important role (DeOre et al., 2021; Rong 

et al., 2023). It disrupts the function of the BBB by dysregulating ACE2 expression and RhoA 

proteins, leading to a loss of BBB integrity, thus facilitating the passage of SP (and other 

substances) into the brain (Buzhdygan et al., 2020; DeOre et al., 2021; Lei et al., 2021; Kim et 

al., 2021a). 

     The endothelial cells of the brain (on which ACE2 is also physiologically expressed) (Chen et 

al., 2021a) are one of the most important components of the BBB and represent a major 

barrier to the entry of pathogenic or infectious agents into the brain (Kim et al., 2021a). 

However, this BBB is not an obstacle for SP (Roh et al., 2024) (Fig. 3). Once in the brain, SP can 

damage the CNS in a variety of ways, which will be described in more detail below. Knowledge 

of SP´s unique ability to cross the BBB has significant and essential implications for the 

understanding of acute and chronic neurological and neuropsychiatric symptoms following a 

SARS-CoV-2 infection (especially Long-COVID disease) (Rong et al., 2023; Spudich and Nath, 
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2022; Theoharides, 2022), but also, as will be shown, following administration of anti-SARS-

CoV-2 products (ASPs). 

 

2. Spike protein and the central nervous system 

2.1. Spike protein: Thrombogenic damage 

     The SP can lead to thrombotic events in a variety of ways. The high ACE2 affinity of SP 

induces platelet aggregation, thrombosis and blood clot-promoting inflammation (Angeli et 

al., 2021, 2022), which was already demonstrated in the mouse model at the beginning of the 

pandemic (Zhang et al., 2020b). In particular, the unbound free SP interacts with platelet 

integrins and triggers platelet deformation and coagulation via filopodia induction (Kuhn et 

al., 2023). The SP also dysregulates antithrombin (Zheng et al., 2021) and fibrinolysis (Ryu et 

al., 2021) and can promote platelet coagulation-promoting hyperreactivity via an inhibitory 

interaction with the α7-nicotinic acetylcholine receptor (α7nAchR) (Changeux et al., 2020; 

O´Brien et al., 2023). In addition, SP has been shown to induce erythrocyte haemagglutination, 

probably via shape and function-altering electrostatic interpolation of positive charges on SP 

with negative charges on erythrocytes (Boschi et al., 2022). The complement system may also 

be affected by SP, resulting in increased coagulopathy (Parry et al., 2023; Perico et al., 2022; 

Rong et al., 2023). The influences of SP on endothelial cell function and inflammatory and 

immune responses described below also have a thrombogenic potential. 

 

2.2. Spike protein: Cerebral tissue and endothelial cell damage 
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     In addition to the direct neurotoxic damage to brain tissue caused by SP, including cell 

death (Rong et al., 2023), SP primarily have a damaging effect on cerebral endothelial cells in 

blood vessels (Kim et al., 2021a; Nuovo et al., 2021) as well as on microvascular homeostasis 

(Panigrahi et al., 2021; Perico et al., 2022). This can occur in a variety of ways: (1) Induction of 

the degradation of the junctional proteins (a) vascular endothelial (VE) cadherin, (b) junctional 

adhesion molecule (JAM) A, (c) connexin-43, and (d) platelet endothelial cell adhesion 

molecule (PECAM) 1 (Raghavan et al., 2021). (2) Activation of (a) integrin α5β1, (b) NF-κB 

(nuclear factor 'kappa-light-chain-enhancer' of activated B cells) (Cosentino and Marino, 2022; 

Olajide et al., 2022; Robles et al., 2021), (c) toll-like receptors (TLR2 & 4) and (d) the RAAS 

(Burnett et al., 2023; Cosentino and Marino, 2022; Fontes-Dantas et al., 2023; Sariol and 

Perlman, 2021; Vargas et al., 2020). (3) Increased expression of leukocyte adhesion molecules 

(Robles et al., 2021). (4) Mitochondrial damage through metabolic and molecular 

dysregulation in brain endothelial cells (Kim et al., 2021a). 

     All of these SP-related pathomechanisms lead to (1) pro-inflammatory and (2) apoptotic 

reactions in endothelial cells, (3) increased vascular permeability, (4) reduced vascular density, 

(5) impaired endothelial cell barrier function in BBB, and (6) reduced cerebral blood flow in 

the brain (Buzhdygan et al., 2020; Jeong et al., 2022; Erickson et al., 2021; Kim et al., 2021a; 

Raghavan et al., 2021; Robles et al., 2021; Theoharides and Kempuraj, 2023), as demonstrated 

in in vitro studies using BBB models (Buzhdygan et al., 2020) and in animal models using 

humanized ACE2 mice (Burnett et al., 2023; Foster et al., 2023; Jabi et al., 2022). The resulting 

neurological and vascular consequences are cerebrovascular and brain tissue rarefaction and 

cognitive dysfunction (Foster et al., 2023; Jabi et al., 2022; Rong et al., 2023). Post-mortem 

studies described cerebral morphological changes, neuronal necrosis, and loss in the 

capillaries of the choroid plexus in COVID-19 patients (Gomes et al., 2021; Yang et al., 2021a). 
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2.3. Spike protein: Neuroinflammatory damage 

     In addition to endothelial inflammatory reactions, SP can cause further neuroinflammatory 

damage in a variety of ways (Kim et al., 2021a; Kumar et al., 2021; Li et al., 2021b; Rahman et 

al., 2021; Zhu et al., 2021b). For example, it activates (1) microglial purinergic signalling (Alves 

et al., 2023), (2) microglia / macrophages (e.g. activation of caspase-1 in BV-2 microglial cells) 

(Cao et al., 2021; Frank et al., 2022; Jeong et al., 2022; Olajide et al., 2022; Theoharides and 

Kempuraj, 2023), and (3) vascular pericytes (Khaddaj-Mallat et al., 2021), with corresponding 

neuroinflammatory consequences. A neuropathological analysis of the brains of 52 patients 

with COVID-19 showed perivascular inflammation with lymphocytic and microglial infiltration 

(Wierzba-Bobrowicz et al., 2021). In addition, post-mortem reports of COVID-19 patients also 

showed significant cerebral neuroinflammation (Boroujeni et al., 2021; Dixon et al., 2020; 

Radhakrishnan and Kandasamy, 2022; Shen et al., 2022; Theoharides and Kempuraj, 2023). An 

important role in this context is played by pro-inflammatory factors such as TNF-α (tumor 

necrosis factor alpha), IL 1β / 6 / 18 (interleukins), NF-κB (nuclear factor 'kappa-light-chain-

enhancer' of activated B cells), NRF2 (nuclear factor erythroid 2-related factor 2) (Cosentino 

and Marino, 2022; Khan et al., 2021; Oka et al., 2021; Olajide et al., 2022; Saha et al., 2022; 

Theoharides and Kempuraj, 2023; Tsilioni and Theoharides, 2023; Wang et al., 2007), T-cell 

receptors (TCR) and superantigens (Cheng et al., 2020). Furthermore, SP (particularly S1) 

functions as a pathogen-associated molecular pattern (PAMP), which induces 

neuroinflammation in animal studies in rats via the activation of pattern recognition 

receptors, independent of viral infection (Frank et al., 2022). In addition, SP may trigger 

neuroinflammatory processes due to their prion-like properties (see below) by stimulating the 

accumulation of toxic prion-like fibrils in neurons (Idrees and Kumar, 2021; Seneff et al., 2023). 
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2.4. Spike protein: Neurodegenerative damage 

     Neurodegenerative and neuroinflammatory processes often go hand in hand (Guzmán-

Martínez et al., 2019). Misfolded proteins are a hallmark of neurodegenerative diseases (Tsoi 

et al., 2023). Pathological protein misfolding can be exacerbated by external factors, such as 

viral infections (Hetz and Saxena, 2017). 

     SP can trigger neurodegenerative damage in the CNS via various mechanisms. SP has been 

shown to bind to amyloidogenic proteins such as amyloid-beta (Aβ), alpha-synuclein (α-syn), 

tau, prion and TDP-43, accelerating their aggregation and misfolding and leading to 

neurodegeneration (Cao et al., 2023; Idrees and Kumar, 2021; Nyström and Hammarström, 

2022; Trougakos et al., 2022). Aβ1–42 in particular has a high affinity for S1 of SP (Hsu et al., 

2021). Aβ1–42 increases the binding and thus the effect of S1 on ACE2 (Hsu et al., 2021). In 

the presence of S1, there is also a reduced clearance of Aβ1–42 (Hsu et al., 2021). These 

aspects suggest that SP tends to act as a functional amyloid and form toxic aggregates 

(Tavassoly et al., 2020). 

     SP has also been shown to have prion-like properties. It contains sequences that are 

characteristic of prion-like proteins and facilitates the accumulation of toxic, prion-like fibrils 

in neurons, contributing to neurodegenerative changes in the CNS (Kyriakopoulos et al., 2022; 

Perez et al., 2023; Seneff et al., 2023). In 2022, Tetz and Tetz identified the presence of prion-

like domains in the SARS-CoV-2 SP (Tetz and Tetz, 2022). Interestingly, SP from other 

coronaviruses do not show such prion-like properties of their RBD (Tetz and Tetz, 2022; Parry 

et al., 2023). In the context of prion similarity, S1 also shows a “glycine zipper” motif, which is 

associated with susceptibility to misfolding and thus prion formation (Parry et al., 2023). SP 
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can also induce the expression of prion protein (PrP) in the brain via hyperinflammation (Parry 

et al., 2023). The increase in prion glycoproteins (PrPC) can lead to misfolding of the prion 

conformation and generate prions and prion-related diseases (Norrby, 2011). In addition, SP 

activates signalling pathways such as mitogen-activated protein kinase (MAPK) and c-Jun N-

terminal kinase (JNK), which are involved in neurotoxicity and prion-like disease processes 

(Kyriakopoulos et al., 2022; Suzuki et al., 2021). And it affects the transmembrane glycoprotein 

CD147, which can also promote neurodegenerative processes (Cosentino and Marino, 2022). 

     Furthermore, in vitro cell culture experiments have shown that SP is involved in the 

increased expression of α-Syn, a protein that tends to aggregate (Wu et al., 2022), which is 

thought to be responsible for a number of neurodegenerative diseases (Brás et al., 2020). In 

addition, the inhibitory effect of SP on the α7-nAChR of the cholinergic system has been 

demonstrated (Changeux et al., 2020; O´Brien et al., 2023; Parry et al., 2023; Tillman et al., 

2023). In the human nervous system (HNS), α7-nAChRs are highly expressed, especially in the 

hippocampus, cortex and limbic regions, and are involved in cognition, sensory information 

processing, attention, working memory and reward pathways (Parry et al., 2023). The 

inhibitory interaction of SP with CNS α7-nAChRs can also be considered pro-

neurodegenerative, as the important role of α7-nAChRs in the pathogenesis of Alzheimer's 

disease (reduction of α7-nAChRs in the brain, especially in the hippocampus) has long been 

known (Ma and Qian, 2019; Parri et al., 2011). 

 

3. Vaccines and the COVID-19 pandemic 

   Vaccines have been used since the late 18th century, with development in the laboratory 

beginning in the late 19th century and continuing on an immunological basis in the 20th 
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century (D´Amelio et al., 2016; Plotkin, 2014). Although corresponding concepts have been 

considered since ancient times (Hussein et al., 2015), the widespread use of vaccines was 

achieved by the English physician Edward Anthony Jenner (1749-1823) in the 1790s with the 

first vaccine against smallpox (Plotkin, 2003; Sern and Markel, 2005). 

 

3.1. Vaccines: Neurological post-vaccination syndrome 

     In addition to their estimated (Ioannidis et al., 2022; Parry et al., 2023; Roussel et al., 2020; 

Watson et al., 2022) and attributed benefits (Pezzotti et al., 2018; Rappuoli et al., 2014), 

vaccines and other immunostimulating drugs are known to have adverse effects on the 

organism. The term post-vaccination syndrome (PVS) has been established for conventional 

vaccines that have been used regularly to date. It encompasses a number of adverse effects 

and has long been known as a vaccine complication. PVS was first described in the early 20th 

century. Specifically, the first cases of post-vaccinal encephalitis were documented in Sweden 

in 1924 following smallpox vaccination (Heinertz, 1948), followed by others (Dodge, 1961). A 

significant increase in Guillain-Barre syndrome (GBS) was observed in the USA in 1976-1977 

as part of a national flu vaccination program (Schonberger et al., 1979). More recent 

descriptions include post-HPV (human papillomavirus) vaccination syndrome (Martínez-Lavín, 

2018; Martínez-Lavín and Tejada-Ruiz, 2020) and other autoimmune and inflammatory 

syndromes triggered primarily by adjuvants, which are referred to as ASIA syndrome 

(autoimmune syndromes induced by adjuvants) (Iremli et al., 2021; Shoenfeld and Agmon-

Levin, 2011). 

     The effects of PVS can vary greatly in severity and type and include autoimmune and 

inflammatory reactions, neurological symptoms and other systemic reactions, with clinical 
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symptoms including chronic pain, fatigue and cognitive impairment (Blitshteyn et al., 2018; 

Iremli et al., 2021; Martínez-Lavín and Tejada-Ruiz, 2020; Rosipal et al., 2014; Vera-Lastra et 

al., 2021). People with a conspicuous history of autoimmune diseases, allergic or convulsive 

reactions and a family history of these have an increased risk of PVS (Soriano et al., 2015). The 

administration of multiple vaccinations within a short period of time may increase the risk of 

developing PVS in vulnerable individuals (Martínez-Lavín and Tejada-Ruiz, 2020). 

     Neurological PVS can be demyelinating processes in the CNS (Karussis and Petrou, 2014). 

These include acute disseminated encephalomyelitis, optic neuritis, transverse myelitis, 

attacks of multiple sclerosis (MS), Miller-Fisher syndrome and neuromyelitis optica spectrum 

disorders (NMOSD) (Kumar et al., 2019; Shoamanesh, 2012). In addition, cases of seizures 

following vaccination have been reported, particularly in children (Nacharova et al., 2021). 

 

3.2. Anti-SARS-CoV-2 products: Historical review 

     During the so-called COVID-19 pandemic (Rehman et al., 2020), the issue of vaccines 

received broad medical, political and social attention and relevance worldwide (Bhagat et al., 

2020). In particular, gene-based medicines came into focus (Corbett et al., 2020), and it was 

only through this pandemic that their broad global clinical application and establishment was 

achieved (Mulligan et al., 2020; Rijkers et al., 2021). Previously, mRNA / DNA-based 

technologies were mainly the subject of experimental scientific research, especially in cancer 

(Maruggi et al., 2019; Pardi et al., 2018; Schlake et al., 2012). Prior to the COVID-19 pandemic, 

mRNA products with the aim of immunizing against a respiratory infectious disease had never 

been approved for public use (Dolgin, 2021). Viral vector DNA products had also only been 
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used to a limited extent against Ebola, dengue fever and Japanese encephalitis (McCann et al., 

2022). 

     After the genetic sequence of SARS-CoV-2 was announced, the pharmaceutical science 

industry focused on the sequence regions encoding the gene message for SP. Almost all ASPs 

are based on SP from the original Wuhan Hu-1 strain (Jackson et al., 2021; Trougakos et al., 

2022). The development of such gene-based products involved technical processes that had 

been available for a long time (Malone et al., 1989), but had never been used on a large or 

even global scale for human use (Bellavite et al., 2023). Originally, mRNA technology was 

primarily intended to replace or deliver a therapeutic protein (Pardi et al., 2015). To combat 

SARS-CoV-2, novel gene-based products were used, whose genetic material (mRNA/DNA) 

encodes the SP, the main surface protein of SARS-CoV-2 (Jackson et al., 2021). Other viral 

SARS-CoV-2 structures, such as for example the comparatively harmless nucleocapsid, would 

have been equally good candidates for immunisation from the outset (see below). ASPs are 

specified to transfect human cells to efficiently produce SARS-CoV-2 SP for an immune 

response (Kämmerer et al., 2024). This is intended to induce neutralising antibodies against 

SARS-CoV-2 in the host organism in order to prevent SP-ACE2-binding (Bellavite et al., 2023; 

Kämmerer et al., 2024).  

 

3.3. Anti-SARS-CoV-2 products: Product types 

     Several types of ASPs are currently available and in use worldwide (Bellavite et al., 2023). 

According to the WHO, more than 350 ASPs are in preclinical or clinical development, and ten 

(as of 2023) have been approved by the WHO for global use (Scholkmann and May, 2023). 

These products can be divided into four different types of mechanism:  (1) “inactivated virus 
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products” (Sinopharm’s Covilo, Sinovac’s CoronaVac; Bharat Biotech’s Covaxin), (2) 

“adjuvanted protein products” (Novavax’s Nuvaxovid and Covovax NVXCoV2373), (3) 

“messenger RNA (mRNA) products” (Moderna’s Spikevax mRNA-1273; Pfizer–BioNTech’s 

Comirnaty BNT162b2), and (4) “adenovirus vector–based DNA products” (AstraZeneca’s 

Vaxzevria and Covishield ChAdOx1, Johnson & Johnson–Janssen’s Ad26. COV2. S, Sputnik V 

and EpiVacCorona (Russia), iNCOVACC (India), Convidecia (China)) (Barouch, 2022). The gene-

based products of Pfizer-BioNTech (BNT162b2, Comirnaty) (Oliver et al., 2020) and Moderna 

(mRNA-1273, Spikevax) (Oliver et al., 2021) were among the first substances to be approved 

(for emergency use) in December 2020 and are currently the most widely used substances in 

the US and Europe (Bellavite et al., 2023). Both products use a lipid nanoparticle platform to 

deliver the synthetic mRNA information to instruct the synthesis of SP in the infiltrated / 

transfected host cell. 

     Interestingly, in non-Western countries, traditional protein-based (CinnaGen/SpikoGen 

(Covax-19)) or inactivated virus vaccines (Bharat Biotech (Covaxin), Sinovac (CoronaVac)) were 

used for most ASP (Parry et al., 2023). In contrast, the novel gene-based products (mRNA and 

adenovirus DNA) were preferred in most Western countries (Igyártó and Qin, 2024; Parry et 

al., 2023). Nevertheless, it should be clearly emphasized at this point that all ASPs introduce 

the foreign SP into the human body, whether as inactivated virus product, as adjuvanted 

protein product, or as a gene-based product of injected mRNA or adenovirus vector-based 

DNA. 

 

3.4. Anti-SARS-CoV-2 products: Approval situation 
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     Although the approval of the genetically engineered ASPs for worldwide clinical use in 

humans was formally granted surprisingly quickly (“warp speed”) (Gee et al., 2021; Kämmerer 

et al., 2024; Patel et al., 2022; Winch et al., 2021), further evidence of the qualitative and 

quantitative efficacy and, above all, the safety of such novel gene-based products must be 

provided on the basis of the experimental studies of phase 3 (Higdon et al., 2022; Kämmerer 

et al., 2024) and the observational studies of phase 4 that are still ongoing (Bellavite et al., 

2023). In particular, since the proclaimed goal of immunizing large population groups (Dolgin 

and Ledford, 2023), healthy people (Sadeghalvad et al., 2022) and even adolescents and 

children (Tian and Yang, 2022) are affected by such measures. At this point, it must be clearly 

emphasized that at the time of approval and deployment of ASPs, phase 3 trials were still 

ongoing. Final results from completed and evaluated ASP studies were therefore not available. 

The final benefit-risk analysis, the safety, efficacy, and side effect profile, and the long-term 

effects of ASPs were therefore unknown and unpredictable. Despite this lack of data, millions 

of people worldwide received ASPs, including non-risk groups such as healthy adults, 

adolescents, and children. 

     It is now known that prior to their global launch in 2020, the novel gene-based ASPs had 

not undergone all the necessary product analyses required for Good Manufacturing Practices 

(GMP) regulation of a drug (according to the guidelines of the EMA (European Medicines 

Agency) (EMA, 2001) or the WHO (World Health Organisation) (WHO, 2005)). Many of the 

regularly required, lengthy and complex safety tests and toxicological analyses were bypassed 

in order to obtain the emergency approval status (Lalani et al., 2023; Parry et al., 2023). In 

addition, the placebo group of the approval trials was unblinded at the time of the emergency 

approval for ethical reasons (Stoehr et al., 2021), i.e. the group of untreated people was 

dissolved (Tsiatis and Davidian, 2021). This unblinding led to changes in the study protocols 
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and to complex problems in assessing, in particular, the long-term efficacy and safety of such 

novel ASPs (Tsiatis and Davidian, 2021). In drug trials, a placebo control group is considered 

necessary in order to assess the efficacy of a new treatment in an unbiased manner and, most 

importantly, to create a basis for comparison (Jensen et al., 2017; Laursen et al., 2023; 

Streiner, 1999). It should also be noted that for large-scale mRNA-based ASP production, the 

manufacturing process was changed. This was followed by the mass production of DNA 

matrices using cloned shuttle vectors, which can be easily multiplied in bacterial cell culture 

systems (Kämmerer et al., 2024). However, this manufacturing process was not the same as 

the original one.  

     Furthermore, it is noteworthy that before 2020 there were no specific regulations for ASPs 

due to their novelty (Banoun, 2023). The WHO even admitted at the time that no detailed 

information was available at that time for the standardized manufacturing, safety and efficacy 

control of corresponding products (Liu et al., 2022). 

 

 

 

3.5. Anti-SARS-CoV-2 products: Immunostimulatory gene-based prodrugs 

     The novel gene-based ASPs used worldwide do not work like conventional protein-based 

vaccines or inactivated viral components in the proclaimed activation of the protective 

immune system (Banoun, 2023). This is because they deliver their immunisation message in 

the form of mRNA / DNA directly into various host cell types in multiple organ systems, which 

are then supposed to produce SP themselves (similar to SARS-CoV-2) in order to present it on 

their surface membrane (from which it can be secreted in soluble form and distributed 
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systemically in the human body). This is intended to secondarily activate the immune system 

(Bellavite et al., 2023; Kämmerer et al., 2024; Trougakos et al., 2022) (Fig. 4). The body's own, 

non-immune cells thus become antigen-presenting cells, with the potential risk of a cytopathic 

autoimmune reaction against cells that express foreign spike antigens (Parry et al., 2023). The 

host cell, pharmacologically transfected by gene-based ASPs, can produce large amounts of 

SP and / or its subunits / peptide fragments (Trougakos et al., 2022) and release them into the 

bloodstream (Cosentino and Marino, 2022; Heinz and Stiasny, 2021; Jackson et al., 2021), 

which can then spread throughout the body (Trougakos et al., 2022). In addition, such gene-

based products have been shown to induce neurogenetic responses (Trougakos et al., 2022), 

including epigenetic reprogramming of, for example, monocyte populations (Arunachalam et 

al., 2021). 

     ASPs, especially of the mRNA / DNA type, have been designed to induce a robust and 

sustained immune response (Li et al., 2022b). For this purpose, these products have been 

genetically stabilised (e.g. by poly(A) tail (Kyriakopoulos and McCullough, 2021; Sahin et al., 

2014) and 3' untranslated region (3'UTR) of human globin (Orlandini von Niessen et al., 2019)) 

in such a way that the transfected host cell is able to produce SP over a longer period of time 

(Bellavite et al., 2023), which are more stably incorporated into the host cell plasma 

membrane and thus presented by a further genetic modification (leader sequence for 

translation) (Bellavite et al., 2023). It is noteworthy in this context that mRNA from gene-based 

products has a higher guanine / cytosine (GC) content than the natural native SARS-CoV-2 

mRNA (53% BNT162b2 / 61% mRNA-1273 vs. 36%) (McKernan et al., 2021), which contributes 

to a further increase in SP production (Mauro and Chappell, 2014). It has long been known 

that high GC content increases mRNA levels in mammalian cells (Kudla et al., 2006). It has thus 

been shown that gene-based ASPs, due to their pharmacokinetics, produce a larger number 
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of SPs in the body than the SARS-CoV-2 virus (Banoun, 2023; McKernan et al., 2021). 

Corresponding spike products can circulate continuously throughout the body (Trougakos et 

al., 2022).  

     In addition, unlike natural mRNA, ASP mRNA (nucleoside-modified mRNA, mod-mRNA, m-

mRNA) can remain intact for days, allowing long-term expression of SPs (Granados-Riveron 

and Aquino-Jarquin, 2021; Igyártó and Qin, 2024; Kämmerer et al., 2024; Sahin et al., 2014). 

The SP can bind in different ways to (among others) different ACE2 types (cell-bound vs. 

soluble) and act on different cells, tissues and organs (Trougakos et al., 2022). In addition, it is 

noteworthy that the gene sequence of the ASPs contains the same FCS as the viral SARS-CoV-

2 mRNA sequence (a section of the four basic amino acids Arg-Arg-Ala-Arg at the S1-S2 

junction), which has an impact on the generation of the soluble S1 (as a product of ASPs) 

(Bellavite et al., 2023; Heinz and Stiasny, 2021; Trougakos et al., 2022; Zhang et al., 2020c). 

     The SP determines the host and cell tropism of SARS-CoV-2 (Wang et al., 2020; Zhu et al., 

2021), whereby the specific ACE2 binding of SP is achieved via RBD on S1 (Jackson et al., 2021; 

Colunga Biancatelli et al., 2021). SP from ASPs shows a native-like mimicry with respect to 

receptor binding functionality and prefusion structure of SP from SARS-CoV-2 infection 

(Watanabe et al., 2021; Zhu et al., 2021). Thus, the main pathogen of SARS-CoV-2 infection 

(Jackson et al., 2021) is mimicked by the product (SP) of a health intervention (ASP). Thus, 

both types of SP (from SARS-CoV-2 infection as well as from ASP injection (in particular the 

mRNA products BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna)) (Bellavite et al., 

2023)) intervene in ACE2-controlled regulatory circuits. The undesirable effects of these SPs 

on, among others, the ACE2-controlled renin-angiotensin-aldosterone, inflammatory, 

coagulation, immune, cardiac, and circulatory systems (Almas et al., 2022; Angeli et al., 2021; 

Athyros and Doumas, 2022; Bellavite et al., 2023; Karlstad et al., 2022; Kim et al., 2021b; 
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Kouhpayeh and Ansari, 2022; Lei et al., 2021; Sun et al., 2022; Zhu et al., 2021), but also on 

other systems in the human body are well known (Mahroum et al., 2022; Mingot-Castellano 

et al., 2022; Mohseni Afshar et al., 2023; Nunez-Castilla et al., 2022; Pour Mohammad et al., 

2022; Shafiq et al., 2021). 

     Due to these novel mechanisms at the gene level, it is controversial whether these 

genetically engineered pharmaceuticals even meet the definition of a “vaccine” or should 

rather be considered “immunostimulatory gene-based prodrugs” (Bellavite et al., 2023; 

Cosentino and Marino, 2022). There has been and continues to be a complex medical, 

scientific, regulatory, and legal debate regarding the respective classifications of “vaccine”, 

“pro-vaccine”, “genetically engineered vaccines”, “prodrug” and “gene therapy product” 

(Banoun, 2023). Moderna stated in 2020 that “mRNA is currently considered by the FDA as a 

gene therapy product” (Moderna, 2020). BioNTech also referred to mRNA products as gene 

therapy products (Sahin et al., 2014). Interestingly, however, ASPs have been exempted from 

the strict regulation of corresponding gene products. Banoun (2023) describes the complexity 

of this terminology and classification dilemma in detail (Banoun, 2023). 

 

 

 

3.6. Anti-SARS-CoV-2 products: Efficacy and safety 

     Early concerns were raised about the efficacy (Addo et al., 2022; Singanayagam et al., 2022; 

Solante et al., 2022; Wilder-Smith, 2022) and safety (Cosentino and Marino, 2022; Kerr et al., 

2023; Kouhpayeh and Ansari, 2022; Liu et al., 2021a; Solante et al., 2022; Trougakos et al., 

2022; Yamamoto, 2022) of ASPs. Seneff et al. (2023) have analysed many of the critical issues 
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related to gene-based immunization products in detail (Seneff et al., 2023). The question of 

the risk-benefit balance of ASPs is extremely complex for several reasons: (1) The severity of 

the disease varies greatly with age, sex and general health status. (2) The spread of the disease 

depends on multifactorial systems. (3) The efficacy of such products (a) decreases over time, 

(b) changes depending on the pathogen variant and (c) is not yet known for long-term 

assessment. (4) Pharmacovigilance data are mainly obtained through passive detection 

systems that are inadequate (e.g. VAERS (Vaccine Adverse Event Reporting System), EMA 

(European Medicines Agency; EudraVigilance), AIFA (Agenzia Italiana del Farmaco; Italian 

Medicines Agency)) (Bellavite et al., 2023). 

     The initially proclaimed efficacy of novel gene-based ASPs in preventing infection, 

protecting against severe courses, and containing the spread of SARS-CoV-2 has declined 

sharply over the course of their use (Igyártó and Qin, 2024; Ioannou et al., 2022; Chemaitelly 

et al., 2022; Tamandjou et al., 2023). It was already known from previous vaccinations that 

repeated vaccine administration can lead to vaccine resistance / tolerance through various 

mechanisms (Parry et al., 2023; Röltgen et al., 2022; Scholkmann and May, 2023; Wheatley et 

al., 2021). Regarding ASPs, it has been shown that ASP-treated individuals produced 

significantly lower antibody titers after primary SARS-CoV-2 infection than untreated 

individuals, suggesting that ASP-induced immune imprinting reduces antibody response 

(Delgado et al., 2022). In addition, multiple ASP boosters significantly reduced antibody titers 

and serum neutralizing efficacy against SARS-CoV-2 by promoting adaptive immune tolerance 

(Gao et al., 2022b). An ASP-related IgG class switch could play a role here (Irrgang et al., 2023). 

Especially for mRNA-based ASPs, the risk of infection with SARS-CoV-2 increases with ASP 

doses (Eythorsson et al., 2022; Hiam et al., 2023; Shrestha et al., 2022, 2023a). Nakatani et al. 

(2024) observed a higher reported incidence of COVID-19 infection among ASP-treated 
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individuals compared to untreated individuals during the pandemic period (OR 1.85, 95% CI: 

1.33-2.57, p<0.001), which increased with the number of vaccine doses received (Nakatani et 

al., 2024). For certain SARS-CoV-2 variants (XBB.1.5 variant of Omicron), a negative vaccine 

effectiveness of -3.26% (95% CI, -6.78% to -0.22%) was observed. This suggests that ASP-

treated individuals had a statistically higher infection rate than the untreated control group 

(Ioannou et al, 2025). This aspect also seems to apply to children treated with ASPs (Feldstein 

et al., 2025). An increasing number of studies show that the greater the number of ASP doses, 

the greater the risk of infection with SARS-CoV-2 (Chalupka et al., 2024; Shrestha et al., 2023b, 

2024a, 2024b), which is impressively illustrated in Figure 2 of the study by Shrestha et al. 

(2023a). These data suggest that the effect of ASPs may be due to their immunosuppressive 

properties (Igyártó and Qin, 2024). Such immunosuppression by ASPs is supported by the 

findings (1) of virus reactivation (varicella zoster virus (VZV) (Daouk et al., 2022; Katsikas 

Triantafyllidis et al., 2021), hepatitis C virus (Lensen et al., 2021)), (2) of increased susceptibility 

to infections (Eythorsson et al., 2022; Shrestha et al., 2023a; Yamamoto, 2022) and (3) 

impaired cancer immune surveillance (Cavanna et al., 2023; Eens et al., 2023; Goldman et al., 

2021; Sekizawa et al., 2022) after ASP injection.  

     In addition, repeated antigenic stimulation of immunity (sustained / recurrent production 

of SP by SARS-CoV-2 infection and ASP injection) leads to an isotype switch of the 

immunoglobulin G (IgG) classes (massive increase in IgG4, >480 times the norm) (Irrgang et 

al., 2023; Uversky et al., 2023), which can have extensive health, especially immunological, 

consequences (Campochiaro et al., 2016; Chen et al., 2019; Della-Torre et al., 2015; Gutierrez 

et al., 2013; Lin et al., 2015; Martín-Nares et al., 2021; Patel et al., 2014; Stone, 2011; Pillai, 

2023; Tsai et al., 2022; Wallace et al., 2019; Yu et al., 2022). This isotype switch to IgG4 was 

observed in about half of the people who received three doses of an mRNA product, but not 
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with adenovirus DNA products (Buhre et al., 2023; Irrgang et al., 2023). The in vivo relevance 

of the observed isotype switch to IgG4 after mRNA ASPs is not yet known (Uversky et al., 

2023).  

     Repeated vaccinations can also lead to immune system exhaustion (Azim and Razzaque, 

2022), as well as the immune memory phenomenon of original antigenic sin (less effective 

immune response compared to the original antigen variant) and immune imprinting 

(increasingly limited immune response to a new antigen variant) (Aguilar-Bretones et al., 

2023). It has been shown that repeated vaccinations with the same antigen can cause 

overstimulation of CD4+ T cells, with subsequent development of autoantibody-inducing CD4+ 

T cells (Baumeier et al., 2022; Tsumiyama et al., 2009). In addition, an association has been 

found between a lower number of polyclonally activated gamma interferon-positive TH1 cells 

and increasing total vaccine load (Skowera et al., 2004). Furthermore, it has been shown that 

ASPs, particularly through the lipid nanoparticle (LNP)-mediated inflammatory milieu, naive T 

cells and thus the adaptive immune response can be systemically damaged (via type I 

interferon-mediated out-of-sequence stimulation) (Igyártó and Qin, 2024; Qin et al., 2022) 

and can impair type I interferon signalling (Seneff et al., 2022), which is crucial for a healthy 

immune system and for infection and carcinogen control (González-Navajas et al., 2012; 

McNab et al., 2015; Teijaro, 2016). 

     With regard to the safety of ASPs, adverse effects have been reported from the outset 

(Scholkmann and May, 2023), the pathophysiological mechanisms of which are largely not yet 

well understood (Trougakos et al., 2022). The most common adverse effects documented with 

ASPs are mild to moderate, not serious, and include fatigue, pain / swelling / redness at the 

injection site, fever, chills, muscle and joint pain, and headaches lasting a few days (Abu-

Hammad et al., 2021; Alhazmi et al., 2021; Baden et al., 2021; Beatty et al., 2021; David et al., 
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2022; Elgendy et al., 2022; Klugar et al., 2021; Menni et al., 2022; Meo et al., 2021; Mushtaq 

et al., 2022; Polack et al., 2020; Riad et al., 2021; Sadoff et al., 2021; Saeed et al., 2021; Singh 

et al., 2022). These complaints (acute reactogenicity responses) are generally interpreted as a 

temporary increase in the production of innate inflammatory cytokines such as IL-1β, IL-6, 

GM-CSF, and interferon type I, as part of the immune system’s response to a foreign pathogen 

(Arunachalam et al., 2021; Li et al., 2022b; Ndeupen et al., 2021; Sprent and King, 2021). When 

Pfizer-BioNTech´s ASP (BNT162b2, Comirnaty) was administered in this context, a systemic 

inflammatory signature, including interferons and interleukins, was demonstrated 

(Bergamaschi et al., 2021; Li et al., 2022b). Under unfavourable conditions, this can lead to 

cytokine release syndrome (CRS) (Au et al., 2021). Although the acute symptoms of an ASP 

injection resolve within a few days in most people, the symptoms persist for weeks or months 

in some affected people (>1 week: 3% / >1 month: 1.4% (Riad et al., 2021), or 4.6% and 0.2% 

(Klugar et al., 2021)). Deaths immediately after ASP administration have also been described 

(Scholkmann and May, 2023). It is noteworthy that fewer adverse events have been reported 

with conventional anti-SARS-CoV-2 vaccines based on protein or inactivated virus components 

than with gene-based ASPs (Parry et al., 2023). 

     Regarding adverse events of ASPs, it must be clearly emphasized at this point that under-

reporting of adverse drug reactions (ADRs) has been known for years. Against this background, 

reports of ADRs must be critically analyzed, particularly with regard to frequency and causality. 

According to Alvarez Requejo et al. (1998), the overall under-reporting rate was 1144 (95% 

confidence interval: 928±1409). This under-reporting mainly affected psychiatric disorders 

and mild to moderate complaints (Alvarez Requejo et al., 1998). Hazell and Shakir (2006) 

provides evidence of significant and widespread under-reporting of ADRs to spontaneous 

passive reporting systems including serious or severe ADRs. The median under-reporting rate 
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across the 37 studies was 94% (interquartile range 82-98%). Particularly in hospital-based 

studies, the median under-reporting rate for more serious or severe ADRs remained high 

(95%) (Hazell and Shakir, 2006). Since vaccines and ASPs are also used in healthy individuals, 

their safety must be excellent. Post-market pharmacovigilance of such products is crucial, as 

pre-market clinical trials are insufficient to detect rare or late-onset ADRs. This method is 

crucial for generating alerts, but it underestimates the real frequency of ADRs (1 to 10% of 

severe ADRs are reported) (Autret-Leca et al., 2006). Less than 0.3% of all ADRs and only 1-

13% of severe ADRs are reported (Lazarus et al., 2010). Likewise, less than 1% of adverse 

vaccine reactions are reported (Lazarus et al., 2010; Shimabukuro et al., 2015). Therefore, 

pharmacoepidemiological studies are urgently needed to confirm the warning signals 

identified through spontaneous passive reporting.  

     This article will focus on the effects of ASPs on HNS and in particular on SPs they induced in 

host cells. Given the similar but not identical (Parry et al., 2023; Scholkmann and May, 2023) 

antigenic sequence of SP from SARS-CoV-2 infection and ASP injection, a common 

pathomechanism is likely (Bellavite et al., 2023), which is supported by similar disease 

symptoms (Alimohamadi et al., 2020; Amanzio et al., 2022; Scholkmann and May, 2023). For 

example, Jeon et al. (2023) reported in a literature review that the initial manifestation or 

relapse of MS occurred in temporal association after both SARS-CoV-2 infection and ASP 

injection (Jeon et al., 2023). Although the artificial SPs have been produced in a way that 

theoretically does not correspond exactly to the viral SP (mutational changes include the 

replacement of two residues with a double proline (e.g. Pfizer-BioNTech and Moderna), or 

mutations in FCS for protease resistance (e.g. Johnson & Johnson-Janssen) (Kyriakopoulos et 

al., 2022; Martínez-Mármol et al., 2023; Parry et al., 2023; Seneff and Nigh, 2021)), the 

artificial SPs can also develop a toxic potential in the human organism similar to that of the 
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viral SP. The common denominator for health complaints following infection and injection is 

primarily, but not exclusively, the SP (Cosentino and Marino, 2022; Parry et al., 2023; 

Trougakos et al., 2022).  

 

4. Anti-SARS-CoV-2 products and the human nervous system 

     ASPs were initially considered safe and effective in all populations based on initial analyses 

from clinical trials (Baden et al., 2021; Polack et al., 2020). However, subsequent studies 

(Fraiman et al., 2022), a steadily increasing number of case reports (react19.org) and publicly 

available adverse event databases (e.g. VAERS (Vaccine Adverse Event Reporting System) 

(vaers.hhs.gov)) have changed the picture of safety and efficacy of these novel gene-based 

products (Igyártó and Qin, 2024). For neurological clinical practice, the current data for ASPs 

show a high neurological safety profile overall (Boruah et al., 2023). Although, according to 

current knowledge, more cases of neurological complaints have been documented after SARS-

CoV-2 infection than after ASP administration (Frontera et al., 2022) (note: under-reporting, 

data collection, data availability, data interest), ASPs can also cause neurological complaints 

that can be attributed to a variety of mechanisms (Marsh et al., 2021; Tondo et al., 2022; Yang 

and huang, 2023). However, each product has a different toxicity profile (Otero-Losada et al., 

2022). The mRNA products from Pfizer-BioNTech (BNT162b2, Comirnaty) and Moderna 

(mRNA-1273, Spikevax) are currently the most commonly used ASPs in the USA and Europe 

(Bellavite et al., 2023). 

 

4.1. Anti-SARS-CoV-2 products: Neurological adverse effects 
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     The undesirable neurological effects of ASP described in the literature so far are 

predominantly neuroinflammatory and affect nerve paralysis, especially of the facial nerve 

(Ahmad et al., 2023; Baden et al., 2021; Meo et al., 2021; Shafiq et al., 2021; Sriwastava et al., 

2022), but also other cranial nerves (Lotan et al., 2022), GBS (Ahmad et al., 2023; Fazlollahi et 

al., 2023; Fernandes et al., 2022; Frontera et al., 2022; Ogunjimi et al., 2023; Sadoff et al., 

2021; Shafiq et al., 2021; Shalash et al., 2022; Sriwastava et al., 2022), NMOSD (Ballout et al., 

2022; Chen et al., 2021b; Harel et al., 2023; Khayat-Khoei et al., 2022; Lee et al., 2023; Rinaldi 

et al., 2022; Sriwastava et al., 2022), acute disseminated encephalo-myelitis (ADEM) (Ballout 

et al., 2022; Fazlollahi et al., 2023; Rinaldi et al., 2022; Sriwastava et al., 2022), MS / MS-like 

syndrome (Ballout et al., 2022; Jeon et al., 2023; Khayat-Khoei et al., 2022; Lee et al., 2023; 

Rinaldi et al., 2022; Sriwastava et al., 2022), transverse myelitis (Ahmad et al., 2023; Fernandes 

et al., 2022; Harel et al., 2023; Lee et al., 2023; Rinaldi et al., 2022; Sriwastava et al., 2022), 

meningitis / encephalitis / meningoencephalitis (Abdelhady et al., 2023; Ballout et al., 2022; 

Deniz et al., 2023; Fazlollahi et al., 2023; Fernandes et al., 2022; Kwon and Kim, 2021; Ramesh 

et al., 2023; Sriwastava et al., 2022; Zlotnik et al., 2022; Zuhorn et al., 2021), encephalopathy 

(Ahmad et al., 2023; Bensaidane et al., 2022; Fazlollahi et al., 2023; Liu et al., 2021b), seizures 

(Ahmad et al., 2023; Fazlollahi et al., 2023; Fernandes et al., 2022; Frontera et al., 2022; Liu et 

al., 2021b), cerebral venous sinus thrombosis (CVST) (Chen et al., 2023; Frontera et al., 2022; 

Sriwastava et al., 2022) and other stroke events (Ahmad et al., 2023; Chen et al., 2023; Corrêa 

et al., 2021; Markus, 2021; Masoudian et al., 2023; Nahab et al., 2023).  

     Less commonly described cases include neuro-ophthalmological complications (optic 

neuritis, uveitis, herpes zoster ophthalmicus, acute macular neuroretinopathy, optic disc 

edema, arteritic anterior ischemic optic neuropathy, central serous retinopathy, acute zonal 

occult outer retinopathy, bilateral choroiditis) (Lotan et al., 2022), primary autoimmune 
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cerebellar ataxia (Lee et al., 2023), neuralgic amyotrophy (Ng et al., 2022), Tolosa-Hunt 

syndrome (Chuang et al., 2021; Lotan et al., 2022), and amyloid-beta related angiitis (ABRA) 

(Kizawa and Iwasaki, 2022). 

 

4.2. Anti-SARS-CoV-2 products: Neurodegenerative potential 

     It is already known that a SARS-CoV-2 infection caused by SP can cause cognitive 

dysfunction in humans, in part through CNS effects on hippocampal neurogenesis (Borsini et 

al., 2022; Ceban et al., 2022; Klein et al., 2021; Nuovo et al., 2022; Oh et al., 2022; Shan et al., 

2022). However, it has also been described that SP of gene-based ASPs can also cause such 

cognitive dysfunction (Alonso-Canovas et al., 2023; Chakrabarti et al., 2022; Krumholz et al., 

2023; Roh et al., 2024; Trougakos et al., 2022). As already mentioned, the CNS-protective BBB 

can be overcome by SP (particularly the S1 subunit), allowing SP to enter the CNS (see above) 

(Buzhdygan et al., 2020; DeOre et al., 2021; Lei et al., 2021; Kim et al., 2021a; Petrovszki et al., 

2022; Rhea et al., 2020; Roh et al., 2024; Rong et al., 2023). Once in the CNS, there are various 

mechanisms by which SP can exert a neurotoxic effect (see above) (Burnett et al., 2023; 

Buzhdygan et al., 2020; Jeong et al., 2022; Erickson et al., 2021; Foster et al., 2023; Jabi et al., 

2022; Kim et al., 2021a; Raghavan et al., 2021; Robles et al., 2021; Rong et al., 2023; 

Theoharides and Kempuraj, 2023). SP can induce protein aggregation, misfolding and 

malfunction, particularly by its interaction with amyloidogenic protein sequences, and thus 

promote neurodegenerative processes (see above) (Cao et al., 2023; Changeux et al., 2020; 

Hsu et al., 2021; Idrees and Kumar, 2021; Kyriakopoulos et al., 2022; Nyström and 

Hammarström, 2022; O´Brien et al., 2023; Parry et al., 2023; Perez et al., 2023; Seneff et al., 

2023; Tavassoly et al., 2020; Tetz and Tetz, 2022; Tillman et al., 2023; Trougakos et al., 2022). 

In addition, neurodegenerative processes are promoted by the fact that SP activates multiple 
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neuroinflammatory mechanisms (see above) (Alves et al., 2023; Cao et al., 2021; Cosentino 

and Marino, 2022; Frank et al., 2022; Jeong et al., 2022; Khaddaj-Mallat et al., 2021; Khan et 

al., 2021; Kim et al., 2021a; Kumar et al., 2021; Li et al., 2021b; Oka et al., 2021; Olajide et al., 

2022; Rahman et al., 2021; Saha et al., 2022; Theoharides and Kempuraj, 2023; Tsilioni and 

Theoharides, 2023; Zhu et al., 2021b). 

     A central neurodegenerative and neurocognitive damage site of SP (particularly S1) is the 

hippocampus (through hippocampal microgliosis and cell apoptosis) (Fontes-Dantas et al., 

2023), where hippocampal memory is achieved in the process of hippocampal neurogenesis 

with the help of, among other things, amyloid beta (Aβ) proteins (Hsu et al., 2021; Nehls, 2016; 

Nyström and Hammarström, 2022). The body's own Aβ is released in the hippocampus as a 

monomer during the process of remembering. Among other things, it helps to ensure that 

new memories do not overwrite previously made ones (Nehls, 2016; Wells et al., 2021). SP 

intervention in, among other things, amyloid homeostasis (see above) influences such central 

nervous neurocognitive processes. In this context, a recent study showed a higher incidence 

rate of cognitive impairment (from mild cognitive impairment (MCI) to Alzheimer's-typical 

symptoms) in people spiked with mRNA products compared to untreated people, and this just 

12 weeks after ASP administration (Roh et al., 2024). Older people and women were 

particularly affected, which can be attributed to demographic differences in 

neurodegenerative pathologies and to different immune reactions to gene-based, primarily 

mRNA products (Roh et al., 2024). Older adults are more likely to have an increased 

inflammatory response, which can predispose them to a faster progression of 

neurodegenerative processes (Li et al., 2023). It has been shown that senescent cells 

responded more sensitively to S1 of SP with a hyperinflammatory reaction (Camell et al., 

2021). Interestingly, SP itself triggers senescence in transfected cells (Tripathi et al., 2021). 
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Gender differences in the functioning of the immune system may be responsible for the 

increased neurocognitive vulnerability of women (Bellavite et al., 2023; Roh et al., 2024). As 

neurodegenerative processes in CNS are often protracted, with a partially silent premorbid 

prodromal phase, and the short post-marketing follow-up of these novel gene-based ASPs has 

made it difficult to assess the neurodegenerative potential of such products. 

     There have also been initial reports of prion diseases following ASP-injection, such as cases 

of Creutzfeldt-Jakob disease (CJD) (Folds et al., 2022; Karabudak et al., 2023; Kuvandik et al., 

2022; Perez et al., 2023; Suo et al., 2023), a highly progressive neurodegenerative disease that 

ultimately leads to death (Uttley et al., 2020). The CJD cases described so far concern ASP of 

mRNA type (Folds et al., 2022; Karabudak et al., 2023; Perez et al., 2023), DNA type (Perez et 

al., 2023; Suo et al., 2023) and inactivated virus type (Kuvandik et al., 2022). However, these 

few, but highly concerning case reports require further scientific investigation. The prion-like 

properties of SARS-CoV-2 have been described above and have already been discussed 

clinically (Bernardini et al., 2022; McGrath et al., 2023; Young et al., 2020), but also require 

further scientific investigation, as a link between COVID-19 and CJD has not yet been proven 

(Perna et al., 2024; Watson et al., 2021; Xu et al., 2022). 

 

4.3. Anti-SARS-CoV-2 products: Other toxic properties 

     In addition to the aspects of protein interaction in the CNS described here (amyloid-like and 

prion-like function), SP may interact with other human proteins in the bloodstream and even 

mimic human proteins (molecular mimicry) (Kanduc and Shoenfeld, 2020; O´Donoghue et al., 

2021). This aspect was already known before 2020 (Hwa et al., 2008). Such molecular mimicry 

could play a role in autoimmune, proinflammatory, thrombogenic and neurodegenerative 
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processes (Lyons-Weiler, 2020; Parry et al., 2023; Segal and Shoenfeld, 2018; Vojdani et al., 

2021). In particular, structures of the HNS may be damaged via antibody cross-reaction 

(Patone et al., 2021). Already in 2020 (Lyons-Weiler, 2020), even before the market launch of 

ASPs, and beyond (Kelleni, 2021; Khavinson et al., 2021; Talotta, 2021), it was pointed out that 

SP has a problematic homology with key proteins of the human immune system, with the 

possibility of autoimmune reactions, including in HNS (Vojdani et al., 2021). The potential of 

ASPs to induce inflammatory processes described in this article (see above) could promote the 

exacerbation of pre-existing autoimmune diseases and / or create conditions for the 

development of novel autoimmune reactions in susceptible individuals (Igyártó and Qin, 

2024). In this context, publications are already known about the occurrence of (auto-

)immunological diseases after the ASPs administration (Alqatari et al., 2023; Aochi et al., 2023; 

Cam et al., 2023; Lansang et al., 2023; Makiyama et al., 2023; Minakawa et al., 2023; Morimoto 

et al., 2023; Rodriguez et al., 2022; Takedani et al., 2023; Talotta, 2021; Yamamoto et al., 

2023). 

     Furthermore, SP has been shown to contains a ‘toxin-like’ domain in the RBD on its S1, with 

sequence homology to the rabies virus (RBG), the human immunodeficiency virus (HIV) 

glycoprotein and the neurotoxin NL-1, all of which bind to and inhibit α7 nAChRs of the 

cholinergic system (Changeux et al., 2020; O´Brien et al., 2023; Parry et al., 2023; Tillman et 

al., 2023), with complex pathological effects on neuromuscular junctions (Nirthanan, 2020), at 

the neuropsychiatric-neurodegenerative level (Lykhmus et al., 2022; Tillman et al., 2023) and 

on inflammatory control (Farsalinos et al., 2020; Tillman et al., 2023). Key words here are 

reactive oxygen species, oxidative stress, pro-inflammatory cytokines and hyperinflammation 

(Parry et al., 2023). In addition to their expression in the HNS (see above), α7-nAChRs are 

expressed in non-neuronal cells such as platelets, lymphocytes, monocytes, macrophages, 
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dendritic cells, adipocytes, keratinocytes, endothelial cells and intestinal and lung epithelial 

cells (Kooijman et al., 2015; Parry et al., 2023). Dysregulation of α7-nAChRs by SP is known to 

be involved in the pathophysiology of COVID-19 disease (Farsalinos et al., 2020; Hollenhorst 

and Krasteva-Christ, 2021). They also affect the sympathetic and parasympathetic autonomic 

nervous system and can lead to dysautonomia (Al-Kuraishy et al., 2021), with far-reaching 

consequences for the heart (cardiac arrhythmia, orthostatic dysregulation, exercise 

intolerance), bladder and intestine (micturition, defecation disorders), sweat glands (secretion 

disorders), and other autonomic systems (insomnia) (Parry et al., 2023). Inhibition of the 

nAChR system by SP can lead to parasympathetic inhibition and sympathetic overstimulation, 

with the possible development of a sympathetically controlled hyperinflammatory cytokine 

storm (Alexandris et al., 2021). 

     In order to stabilize an artificial mRNA (nucleoside-modified mRNA, mod-mRNA, m-mRNA) 

(natural mRNA is highly unstable (Yang et al., 2003); average half-life in mammals about 7 h 

(Sharova et al., 2008)) and thus improve its translation in the living organism, genetically 

modified pseudouridine or methylpseudouridine has been incorporated into mRNA-based 

ASPs (Kämmerer et al., 2024; Mulroney et al., 2024) instead of the natural native uridine 

(nucleoside made from the nucleic base uracil and the sugar β-D-ribose (Yamamoto et al., 

2011)) (Morais et al., 2021; Park et al., 2021). One of the purposes of this is to prevent the 

natural immune defence against foreign material by TLRs and interferons (including type I) 

(Andries et al., 2015; Theoharides and Kempuraj, 2023). This point has been known for years, 

even before the pandemic (Karikó et al., 2005). However, it has been shown that N1-

methylpseudouridine from ASPs (for their long-lasting product effect (Karikó et al., 2008)) can 

induce ribosomal frameshifts of unknown magnitude during translation, leading to abnormal 

protein products that can trigger cellular dysfunctions, which in turn can induce 
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neurodegenerative processes (Parr et al., 2020; Mulroney et al., 2024). Corresponding studies 

on the effects of these frameshift products, especially on autoimmune, carcinogenic and 

neurodegenerative processes in the human body, are not yet available (Igyártó and Qin, 2024). 

     In addition, LNP (diameter about 100 nm (Buschmann et al., 2021)) have been added to 

some ASPs as a protective cover (Igyártó and Qin, 2024) for foreign RNA (Pfizer-BioNTech 

(Comirnaty, BNT162b2); Moderna (SPIKEVAX, mRNA1273)), foreign DNA (AstraZeneca 

(Vaxzevria, ChAdOx1 nCOV-19); Janssen (COVID-19 vaccine, Ad26.COV2.S)) or foreign protein 

(Novavax (Nuvaxovid, NVX-CoV2373)) structures, as these would otherwise be recognised as 

foreign by the human immune system and broken down (Karikó et al., 2005; De Beuckelaer et 

al., 2016). The incorporated modified mRNA was detectable in the body for weeks due to the 

protective LNP (Castruita et al., 2023; Fertig et al., 2020; Röltgen et al., 2022). The synthetically 

produced ionizable lipids of the LNP are estimated to have a half-life of 20 to 30 days in vivo 

(Comirnaty, 2021). Interestingly, it was shown that the mRNA-LNP amount and the mRNA-LNP 

ratio of the mRNA products differed between the individual batches (Tinari, 2021). As long as 

such modified mRNA remains in the transfected cells, the intracellular production of 

(potentially pro-neuroinflammatory and pro-neurodegenerative) SP continues (Parry et al., 

2023). 

     LNP are used to transport mRNA and enhance cell wall penetration, which is already used 

in chemotherapeutics for the treatment of brain tumours (Anand et al., 2019) and other 

pharmaceutical products (Gómez-Aguado et al., 2020; Hou et al., 2021). They have been 

shown to easily penetrate biological tissues and membranes and thus reach all organs (Di et 

al., 2022; Igyártó and Qin, 2024; Parry et al., 2023). LNP have also been shown to be able to 

cross the BBB and the blood-placental barrier (Ndeupen et al., 2021; Turni and Lefringhausen, 

2022; Wick et al., 2010; Zhou et al., 2018). LNPs can reach placental cells such as trophoblasts, 
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which is being discussed for the treatment of placental diseases during pregnancy (Swingle et 

al., 2023). Another aspect is the use of LNPs for gene delivery to fetal organs (Abostait et al., 

2024). It could be shown that LNPs can effectively deliver mRNA for gene editing enzymes to 

the fetal mouse brain, resulting in successful transfection and editing of brain cells (Gao et al., 

2024). For LNP of ASPs, there is also the possibility of similar distribution to the placenta and 

fetus. Currently, such ASP effects on humans are unknown (Zhong et al., 2024). In a recent 

study, mRNA-based ASP (mRNA-1273) intramuscularly given to pregnant mice rapidly 

circulated in maternal blood and crossed the placenta within 1 h to spread in the fetal 

circulation. Although spike mRNA could accumulate in fetal tissues, mainly the liver and get 

translated into SP (Chen et al., 2025). 

     LNP, like SP (Burnett et al., 2023), can also activate TLRs, which can induce further 

neuroinflammatory signaling pathways, and also promote neurodegenerative processes (Kiaie 

et al., 2022; Ndeupen et al., 2021; Trougakos et al., 2022; Turni and Lefringhausen, 2022). In 

ASPs, the pro-inflammatory LNP appear to be the crucial component in triggering an immune 

response (Igyártó and Qin, 2024). The LNP, which was originally considered to be an inert 

carrier and transport vehicles for mRNA (Pardi et al., 2015). Exposure to such ASPs may 

therefore induce an early high level of inflammation, followed by a long-term sustained lower 

level of chronic inflammation (Igyártó and Qin, 2024). Such chronic persistent inflammation 

ultimately burdens the immune system (Wherry and Kurachi, 2015) and has an immense 

impact on pro-neurodegenerative processes (Amor et al., 2014; Chitnis and Weiner, 2017; 

Tanaka et al., 2020), with a self-sustaining cycle of chronic immune activation (peripheral, 

systemic, central nervous system) and neurodegeneration (Gao and Hong, 2008). The 

potentially toxic potential of LNP was already known prior to the worldwide administration of 

corresponding ASPs. 
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5. Anti-SARS-CoV-2 products and their hubris 

5.1. Anti-SARS-CoV-2 products: contamination, undeclared admixtures from manufacturing 

process 

     Scholkmann and May (2023) describe in detail the numerous findings of process- and 

product-related contamination of ASPs (legally correct: undeclared admixtures from the 

manufacturing process), the biological consequences and health effects of which (such as 

long-term immunological side-effects) are still poorly understood to date (Scholkmann and 

May, 2023). Igyártó and Qin (2024) also point to contamination during the manufacturing 

process of ASPs (Igyártó and Qin, 2024). Studies show that there were significantly different 

side-effect profiles between the individual ASP batches (Schmeling et al., 2023). In addition to 

the vulnerable aspects of the transport, storage and clinical handling of ASPs, this could 

indicate different levels of contamination (i.e. quality and purity defects) (Igyártó and Qin, 

2024). It is noteworthy that ASPs also contain substances such as the proprietary functional 

excipients ALC-0315 and ALC-0159, which have never been used in a medicinal product before 

and are not registered in the European Pharmacopoeia or the European C&L Inventory 

(Segalla, 2023). According to the manufacturer, such nanoparticles were only intended for 

research purposes and not for human use (Parry et al., 2023).  

     Furthermore, DNA contamination was detected in the bivalent mRNA vaccines from both 

Moderna and Pfizer-BioNTech that exceeded the limits set by the European Medicines Agency 

(EMA) and the US Food and Drug Administration (FDA) (Buckhaults, 2023; Kämmerer et al., 

2024; König and Kirchner, 2024; McKernan, 2023; McKernan et al., 2023; Pekova, 2025; 
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Raoult, 2024; Speicher et al., 2023; Wang et al., 2024). The impact of such plasmid DNA 

fragments on human health is not yet known (Igyártó and Qin, 2024). However, it has been 

known for years that plasmid DNA can integrate into the genome, with the risk of insertional 

mutagenesis (Sahin et al., 2014). Further genetic analyses proved, worryingly, that residual 

DNA represents not only fragments of the DNA matrices encoding for SP gene, but all genes 

from the plasmid, including the simian virus 40 (SV40) promoter/enhancer and the antibiotic 

resistance gene (to Kanamycin) (Kämmerer et al., 2024; Raoult, 2024). This is a concern 

because SV40 is associated with cancer in humans (Carbone et al., 2020; Kolevatykh, 2024; 

Rotondo et al., 2019). SV40 is a DNA tumor virus originally found as a contaminant in polio 

vaccines administered between 1955 and 1963 (Poulin and DeCaprio, 2006). Double-stranded 

RNA (dsRNA) has also been detected (Igyártó and Qin, 2024) in the mRNA products from 

Pfizer-BioNTech (Comirnaty, 2021) and Moderna (Moderna, 2021). This dsRNA can activate 

innate immune sensors, trigger inflammatory responses and restrict protein translation from 

mRNA, as has long been known (Karikó et al., 2005, 2008; 2011) and is supported in current 

animal studies with corresponding ASP from Pfizer-BioNTech (Comirnaty, BNT162b2) (Li et al., 

2022b). The importance of the primarily inflammatory component is underlined by the fact 

that highly purified mRNA without detectable dsRNA did not induce any innate or adaptive 

immune responsesin vivo (Igyártó and Qin, 2024). The impact of such dsRNA fragments on 

human health is not yet known (Igyártó and Qin, 2024). 

 

5.2. Anti-SARS-CoV-2 products: Known toxicity 

     The potentially pathological mechanisms of action mentioned here, particularly of SP, are 

generally neither novel, nor unknown, nor specific to SARS-CoV-2 alone. The SP of SARS-CoV-

1 (Petrosillo et al., 2020) (the virus of the severe acute respiratory syndrome (SARS) pandemic 
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of 2002/2003 (who.int, 2024)) was already known to stimulate the immune system, among 

other things via the NF-κB signaling pathway, to release large amounts of pro-inflammatory 

mediators (such as TNF-α and IL-6) (Wang et al., 2007). Even before SARS-CoV-2, it was known 

that such inflammatory responses have effects on the CNS with corresponding 

neurodegenerative consequences. Animal studies had already shown at that time that such 

inflammatory mechanisms affected the hippocampus. This even occurred across the placenta 

when fetuses were exposed to maternal IL-6. Prenatal exposure to IL-6 led to inflammation-

triggered neurodegeneration in the hippocampus, including impaired spatial learning, among 

other things (Samuelsson et al., 2006). The inflammatory release of IL-6 (e.g. as part of 

immunisation) in pregnant animal’s blocks, among other things, hippocampal neurogenesis in 

the fetus, with long-lasting effects on the development and function of the maturing brain 

that are still evident in later adult animals (Mouihate and Kalakh, 2021). In humans, too, the 

IL-6 levels are inversely related to hippocampal volume. This means that any long-term 

inflammation causes permanent damage to adult hippocampal neurogenesis and contributes 

to the neurodegeneration of the hippocampus (Marsland et al., 2008). The inflammatory 

messenger TNF-α has been shown to have a negative influence on autobiographical memory 

via this inflammation-neurodegeneration pathway (Takahashi et al., 2021). Similar effects 

have been shown for many other pro-inflammatory messengers, such as IL-1β, which is also a 

potent inhibitor of hippocampal neurogenesis (Theobald et al., 2021; Wu et al., 2013). 

     All of these aspects were already known long before the decision was taken to use novel 

gene-based mRNA/DNA substances to combat SARS-CoV-2, which induce the human body 

(with the supposed aim of protective immunisation) to produce SP itself in its transfected host 

cells. It is not surprising that SP products of ASPs also have a neurotoxic and 

neurodegenerative effect on the CNS of the host organism via such pro-inflammatory 
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processes (Tahtinen and Mellman, 2022). Against this background, it remains to be clarified 

why this novel method of immunisation was chosen, despite possible alternatives (Barouch, 

2022; Oronsky et al., 2022) and the known potential toxicity of SP, as shown here. 

5.3. Anti-SARS-CoV-2 products: consequences 

     All of these aspects mentioned here are set the background that more than 13 billion ASP 

doses from different platforms have been administered worldwide (more doses than there 

are potentially implicated people on earth) (Scholkmann and May, 2023), and a total of around 

72% of the world's population has been injected at least once (Uversky et al., 2023). How 

much, for how long, where and with what health consequences artificial SP (and other 

injection components) are produced and circulate in the human body after the application of 

gene-based ASPs in particular has not yet been conclusively clarified (Bansal et al., 2021; 

Bellavite et al., 2023; Castruita et al., 2023; Cognetti and Miller, 2021; Cristoni et al., 2022; 

Fertig et al., 2020; Ogata et al., 2022; Parry et al., 2023; Röltgen et al., 2022; Trougakos et al., 

2022), because the systemic biodistribution and disposition of ASPs (of mRNA and DNA codes) 

(Parry et al., 2023) has not yet been investigated to the necessary extent (Cosentino and 

Marino, 2022). Against this background, it must be acknowledged that there is only limited 

knowledge on how SP, LNP, various modifications of mRNA (5’ and 3’ modifications, the use 

of unique nucleotides, etc.) and other product components as well as their contamination in 

the human body, since no specific studies, especially no long-term studies, have been 

conducted on this topic (Igyártó and Qin, 2024). 

     SP is detectable in plasma from individuals as early as 1 day after the first product 

incorporation (from the mRNA products Pfizer-BioNTech (BNT162b2, Comirnaty) and 

Moderna (mRNA-1273, Spikevax) (Ogata et al., 2022)) and for at least another 60 days in 

human lymph node biopsy studies (Röltgen et al., 2022; Yonker et al., 2023). In addition, SP 

Jo
ur

na
l P

re
-p

ro
of



from ASP injections have been detected in circulating exosomes for at least four months 

(Bansal et al., 2021). Contrary to the initial official statements, the SP production by human 

body cells is not limited to the intramuscular injection site and does not end within a few days 

(Kämmerer et al., 2024). Even mRNA components of ASPs have been detected in the human 

body (lymph nodes, plasma and other organ tissues) for days (15d (Fertig et al., 2020), 30d 

(Krauson et al., 2023)). This is remarkable because natural mRNA is highly unstable (Yang et 

al., 2003), with an average half-life in mammals of about 7 h (Sharova et al., 2008). Thus, the 

statement made, especially at the beginning of ASP market launch, that corresponding 

products would be degraded in vivo within hours, or a few days is also no longer tenable 

(Igyártó and Qin, 2024). 

     It has already been shown that SP in the transfected cells can lead to mitochondrial 

impairments and, once in the cell nucleus, to dysregulations at the level of gene expression 

(Kim et al., 2021a). The localisation of SP in the cell nucleus was reported as early as 2020 

(Zhang et al., 2020d) prior to the global market launch of products (Oliver et al., 2020, 2021) 

designed to induce the body to produce SP itself. Further studies followed, with the detection 

of NLS in SP of SARS-CoV-2 (Sattar et al., 2023), which is new and unique in the group of SARS 

coronaviruses (Igyártó and Qin, 2024). This NLS enables SP to be transported to the cell 

nucleus. Spike mRNA may also reach the cell nucleus with SP (Sattar et al., 2023). A 

comparable transport of SP and / or mRNA of ASPs into the cell nucleus is theoretically 

possible (Igyártó and Qin, 2024). In addition, it has been shown that reverse transcription of 

the corresponding ASP mRNA (Pfizer-BioNTech) into a DNA copy is possible in an immortalized 

human hepatocyte cell line (Aldén et al., 2022). In addition to possible neurodegenerative 

LINE-1 activation in neurons (Terry and Devine, 2020; Thomas et al., 2012), this suggests the 

possibility of intergenerational transmission when germ cells incorporate the DNA copy into 
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the host genome (Parry et al., 2023). Whether this occurs in vivo remains to be determined 

(Merchant, 2022). Eukaryotic cells, including human cells, use reverse transcription to 

replicate telomeres and retrotransposons (Chandramouly et al., 2021; Domazet-Lošo, 2022; 

Sciamanna et al., 2016). 

     The possibility of retropositioning the genetic code from ASP suggests that the production 

of a foreign pathogenic protein (namely SP) may occur throughout life or even across 

generations (Domazet-Lošo, 2022). The insertion of new / foreign DNA into the human 

genome is a serious problem, especially when it occurs at the level of the reproductive stem 

cells (Igyártó and Qin, 2024). In this context, it should be noted that mRNA from the products 

Pfizer-BioNTech (BNT162b2, Comirnaty) (Comirnaty, 2021) and Moderna (mRNA-1273, 

Spikevax) (Moderna, 2021) have been detected in both the testes and the ovaries, among 

many other organs and tissues. And since, as shown above, the mRNA can enter the cell 

nucleus and it has also been shown that the mRNA can be reverse-transcribed into DNA, there 

is a theoretical possibility, which has yet to be proven, that corresponding information can be 

integrated into the genome. Studies in mice have already shown that even a single exposure 

to mRNA-LNP complexes can inhibit adaptive immune responses and alter innate immune 

fitness in a heritable manner (Qin et al., 2022). 

 

6. Conclusions 

     As presented here, SP has the neurotoxic potential to damage the HNS, and in particular 

the CNS. The SP based on the novel gene-based ASPs should be critically highlighted here. This 

is because these products have been used worldwide for the intended preventive protection 

against SARS-CoV-2, including in healthy people (Sadeghalvad et al., 2022), adolescents and 
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even children (Tian and Yang, 2022). And that, although (1) such gene-based product 

mechanisms had never been used clinically before (especially not for such indications) (Anand 

and Stahel, 2021; Hogan and Pardi, 2021; Maruggi et al., 2019; Mulligan et al., 2020; Pardi et 

al., 2018; Park et al., 2021; Rijkers et al., 2021; Schlake et al., 2012; Wadhwa et al., 2020; Zhang 

et al., 2019), (2) no long-term evaluations or final safety analyses were available before the 

emergency market launch in 2020 and the rapid worldwide use (Bansal et al., 2021; Bellavite 

et al., 2023; Castruita et al., 2023; Cognetti and Miller, 2021; Cosentino and Marino, 2022; 

Cristoni et al., 2022; Fertig et al., 2020; Fotuhi et al., 2020; Lu et al., 2021; Röltgen et al., 2022; 

Scholkmann and May, 2023; Trougakos et al., 2022; Yonker et al., 2023), and (3) alternative 

immunization options would also have been possible (inactivated virus products or 

adjuvanted protein products) (Barouch, 2022; Oronsky et al., 2022). 

     The toxic properties of SP described here provide a good explanation for many of the 

neurological complaints documented to date, both after SARS-CoV-2 infection and after ASP 

injection (Kowarz et al., 2022). In particular, neuroinflammation and neurodegeneration play 

a prominent role. It is noteworthy that not as many adverse events have been reported with 

conventional anti-SARS-CoV-2 vaccines based on protein or inactivated viral components as 

with gene-based ASPs (Parry et al., 2023), underscoring the toxicity of the body-wide 

biodistribution and sustained production of SP from gene-based ASPs. Even compared to all 

other classic non-anti-SARS-CoV-2 vaccines, the frequency of adverse events with ASPs, 

especially of the mRNA type, is much higher per million doses administered (Igyártó and Qin, 

2024). 

     Already now, only four years after approval (as of December 2024), a large number of 

adverse side effects in multiple organ systems caused by ASPs are occurring at an 

unprecedented frequency (Parry et al., 2023), although this article is limited to the adverse 
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side effects of SP on the HNS. The website www.react19.org lists (as of December 2024) over 

3500 published articles and case reports on adverse side effects of ASPs in over twenty organ 

systems (react19.org). There is still no data at all on any long-term neurological consequences 

of such immunisation measures, given the existing time horizon (Fotuhi et al., 2020; Lu et al., 

2021; Scholkmann and May, 2023).  

     Data on the negative consequences of ASPs are difficult to collect, as it must be proven that 

the ASP is the cause of any physical or health damage. However, this has already been 

achieved with the detection of SP from the injection (but not the nucleocapsid protein from 

the infection) of inflammation sites in the brain and heart, especially in the endothelial cells 

of small blood vessels (Baumeier et al., 2022; Mörz, 2022; Yonker et al., 2023). 

Histopathological post-mortem analyses of the brain revealed predominantly lymphocytic 

acute vasculitis and multifocal necrotizing encephalitis, including glial and lymphocytic 

inflammatory reactions (Mörz, 2022). The heart also showed acute lympho-histiocytic 

myocarditis and vasculitis (Mörz, 2022). Components of the injection material have also been 

found in other tissues and cells (Comirnaty, 2021; Moderna, 2021; Pardi et al., 2015; 

Scholkmann and May, 2023; Yang et al., 2021b). However, to date, the regular regulatory 

authorities have only officially recognised a causal relationship between an mRNA ASP and a 

serious adverse event for pericarditis and myocarditis (Diaz et al., 2021). Already at the 

beginning of 2021, shortly after ASP-onset, there were indications of ASP-associated 

myocarditis (Barda et al., 2021; Baumeier et al., 2022; Cereda et al., 2021; Mevorach et al., 

2021; Nevet, 2021). Which was proven in autopsy studies. (Baumeier et al., 2022; Choi et al., 

2021; Mörz, 2022; Schneider et al., 2021; Suzuki et al., 2022; Verma et al., 2021; Yonker et al., 

2023). 

     Even if the rate of neurological complaints after an acute SARS-CoV-2 infection has been 
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described more frequently than after ASP administration (note: under-reporting, data 

collection, data availability, data interest), the adverse side effects of ASP must not be 

neglected or even dismissed as a lesser evil. Particularly in view of the fact that this was a 

worldwide preventive immunisation attempt on healthy people, adolescents and even 

children. The unprecedented worldwide mass injection of a novel gene-based product that 

provides only minimal protection, if any, against infection and spread of SARS-CoV-2 (Igyártó 

and Qin, 2024) gives rise to a critical analysis of this anti-pandemic measure. The decision to 

prefer gene-based platforms over conventional and long-established vaccination methods 

must be carefully examined scientifically, politically and legally. 

     A fundamental analysis of the pharmacological efficacy, safety, risk and symptom profile of 

such novel gene-based products, which are used in billions of doses worldwide, is essential 

and is part of good clinical practice and the moral obligation of science and medicine. Further 

extensive, critical and open-minded scientific research, including global epidemiological 

studies, is absolutely necessary in order to better understand the effects and long-term 

potential of such products, which are only partially understood. Understandably, this should 

be done before further widespread use of such products on the world´s population, in view of 

the numerous planned genetic medical procedures worldwide and in view of a possible 

renewed declaration of a potential pandemic situation. For science-based, optimal and 

humane patient care in the areas of prevention, diagnosis and therapy. 

     In line with existing protein-associated neologisms, such as tauopathy (Götz et al., 2019; 

Irwin, 2016; Kovacs, 2015; Olfati et al., 2022) or synucloinopathy (Brás et al., 2020; Coon and 

Singer, 2020; Jellinger, 2003; Marti et al., 2003; Wong and Krainc, 2017), it is proposed here 

to use the term spikeopathy for spike protein-associated pathologies. This is therefore 

another proteinopathy with, among other things, neurodegenerative potential (Vuic et al., 
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2022). This cause-specific terminology is intended to enable uniform, unambiguous and clear 

communication. 

     At this point, it should also be noted that terms used so far such as post-COVID-19 

vaccination syndrome (PCVS), acute COVID-19 vaccination syndrome (ACVS), post-acute 

COVID-19 vaccination syndrome (PACVS), long post-COVID vaccination syndrome (LPCVS), 

autoimmune post-COVID vaccine syndromes, post-vaccine syndrome (Scholkmann and May, 

2023) are incorrect. As mentioned above, these are not classic conventional vaccinations, but 

a novel genetically based immunisation concept using immunostimulatory gene-based 

prodrugs (Bellavite et al., 2023; Cosentino and Marino, 2022). Alternatively, the term gene-

based prodrug syndrome (GPS) could be used in this context. Prodrugs are initially 

pharmacologically inactive substances that are converted into a pharmacologically active 

product in the body. In the case of gene-based anti-SARS-CoV-2 prodrugs, this occurs via, 

among other things, the mRNA effect in ribosomes, which triggers SP synthesis. 

     For medical diagnosis, care and treatment, medical documentation and communication, 

and for scientific research, it is essential to use correct terminology to avoid confusion and 

misinterpretation of the underlying causes and patterns of damage. The use of the terms 

proposed here is intended to help ensure that corresponding side effect syndromes are taken 

seriously and recognised as a consequence of product application, that the underlying 

pathomechanism becomes more quickly and clearly accessible, and that the likelihood of 

them being confused with other disease syndromes and thus misdiagnosis is reduced. 

 

Legends 
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FIGURE 1 

Schematic representation of SARS-CoV-2 (left), the four structural proteins of the viral 

membrane (middle) and the homotrimeric spike protein (SP) (right) (modified from Mistry et 

al., 2022; Mittal et al., 2020). S1: S1 subunit at the distal, outward-projecting end of SP; RBM: 

receptor binding motif; RBD: receptor binding domain; S2: S2 subunit of a C-terminal region 

that forms the stalk of SP and is embedded proximal to the viral membrane; SFD: stalk fusion 

domain. RNA: ribonucleic acid. 
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FIGURE 2 

Schematic representation of the SARS-CoV-2 lifecycle (modified from Duan et al., 2020; 

Harrison et al., 2020). ACE2: angiotensin-converting enzyme 2, TMPRSS2: transmembrane 

protease serine 2, ERGIC: endoplasmic-reticulum-Golgi intermediate compartment. RNA: 

ribonucleic acid. 
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FIGURE 3 

Schematic representation of a cross-section through a cerebral capillary (left) and the blood-

brain barrier (BBB) (right) (modified from Stefanou et al., 2022). To illustrate the passage of 

the spike protein and its S1 subunit across the BBB. ACE2: angiotensin-converting enzyme 2. 

 

FIGURE 4 

Schematic representation of the functional mechanism of anti-SARS-CoV-2 products (ASPs) 

(top: mRNA products; bottom: adenovirus vector-based DNA products). Following ASP 

injection into the human body, the product reaches the human target cell (HTC), fuses with it 

and releases the genomic ASP material into the HTC. From this, the HTC itself produces the 

viral spike protein (SP). SP is then attached to the HTC surface and presented to the human 

immune system (HIS). This stimulates an immune response. The HIS thus comes into contact 

with SP (a viral surface protein). The aim of this immunisation is to enable the pre-formed HIS 

to respond more quickly and effectively to an invasion by SARS-CoV-2 viruses. RNA: ribonucleic 

acid. DNA: deoxyribonucleic acid. LNP: lipid nanoparticle.  
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