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Abstract

From 1 January 2018 came into force Regulation (EU) 2015/2238 of the European Parlia-

ment and of the Council of 25 November 2015, introducing the concept of “novel foods”,

including insects and their parts. One of the most commonly used species of insects are:

mealworms (Tenebrio molitor), house crickets (Acheta domesticus), cockroaches (Blatto-

dea) and migratory locusts (Locusta migrans). In this context, the unfathomable issue is the

role of edible insects in transmitting parasitic diseases that can cause significant losses in

their breeding and may pose a threat to humans and animals. The aim of this study was to

identify and evaluate the developmental forms of parasites colonizing edible insects in

household farms and pet stores in Central Europe and to determine the potential risk of par-

asitic infections for humans and animals. The experimental material comprised samples of

live insects (imagines) from 300 household farms and pet stores, including 75 mealworm

farms, 75 house cricket farms, 75 Madagascar hissing cockroach farms and 75 migrating

locust farms. Parasites were detected in 244 (81.33%) out of 300 (100%) examined insect

farms. In 206 (68.67%) of the cases, the identified parasites were pathogenic for insects

only; in 106 (35.33%) cases, parasites were potentially parasitic for animals; and in 91

(30.33%) cases, parasites were potentially pathogenic for humans. Edible insects are an

underestimated reservoir of human and animal parasites. Our research indicates the impor-

tant role of these insects in the epidemiology of parasites pathogenic to vertebrates. Con-

ducted parasitological examination suggests that edible insects may be the most important

parasite vector for domestic insectivorous animals. According to our studies the future

research should focus on the need for constant monitoring of studied insect farms for patho-

gens, thus increasing food and feed safety.

Introduction

The growing demand for easily digestible and nutritious foods has contributed to the emer-

gence of new food sources in agricultural processing. Edible insects are one such category of
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access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: Publication costs will be covered by

KNOW (Leading National Research Centre)

Scientific Consortium “Healthy Animal-Safe Food,”

decision of Ministry of Science and Higher

Education No. 05-1/KNOW2/2015. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-1005-3945
https://doi.org/10.1371/journal.pone.0219303
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219303&domain=pdf&date_stamp=2019-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219303&domain=pdf&date_stamp=2019-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219303&domain=pdf&date_stamp=2019-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219303&domain=pdf&date_stamp=2019-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219303&domain=pdf&date_stamp=2019-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219303&domain=pdf&date_stamp=2019-07-08
https://doi.org/10.1371/journal.pone.0219303
http://creativecommons.org/licenses/by/4.0/


under-utilized foods with a high nutritional value [1]. Insects are farmed for direct consump-

tion and for use in the production of foods and feeds [2]. The concept of “novel foods”,

including insects and their parts, has been introduced by Regulation (EU) 2015/2238 of the

European Parliament and of the Council of 25 November 2015 on novel foods, which came

into force on 1 January 2018. The growing popularity of exotic pets has also increased the

demand for novel foods. However, edible insects are often infected by pathogens and parasites

which cause significant production losses [3]. These pathogens also pose an indirect threat for

humans, livestock and exotic animals. The majority of insect farming enterprises in the world

are household businesses, and in Europe edible insects are rarely produced on a large scale. In

European Union, entomophagy is rare, and it is regarded as a cultural taboo [4]. More than

1900 species of insects are considered to be edible. The most popular edible insects include

mealworms (Tenebrio molitor) [5], house crickets (Acheta domesticus) [4], cockroaches (Blat-

todea) [6] and migratory locusts (Locusta migrans) [4].

Mealworms are beetles of the family Tenebrionidae. Adult beetles are generally 13-20 mm

in length, and larvae have a length of around 30 mm. During their short life cycle of 1-2

months, females lay around 500 eggs. One of the largest mealworm suppliers in the world is

HaoCheng Mealworm Inc. which produces 50 tons of live insects per month and exports

200,000 tons of dried insects per year [7]. Mealworms are used in human and animal nutrition,

and they are a popular food source for exotic pets, including reptiles and insectivores. The

nutritional value of mealworm larvae is comparable to that of meat and chicken eggs [8]. Meal-

worms are easy to store and transport. They are abundant in highly available nutrients and are

regarded as a highly promising source of feed in poultry and fish breeding. Mealworms can

also be administered to pets and livestock [4]. The popularity of mealworms consumption by

humans is on the rise especially in Europe. Mealworms effectively degrade biological waste

and polystyrene foam [9]. The most common mealworm parasites include Gregarine spp.,

Hymenolepis diminuta and mites of the family Acaridae. Mealworms are model insects in para-

sitological research [10–12].

The house cricket (A. domesticus) has a length of up to 19 mm, and its life cycle spans 2-

3 months. It is a source of food for reptiles, amphibians and captive bred arachnids, includ-

ing spiders of the family Theraphosidae. House crickets are consumed by humans in pow-

dered form or as protein extracts [13, 14]. Whole crickets are consumed directly in Thailand

[1]. These insects are frequently infested by Nosema spp., Gregarine spp. and Steinernema
spp.

Cockroaches of the order Blattodea include the German cockroach (Blattella germanica),

American cockroach (Periplaneta americana), Cuban burrowing cockroach (Byrsotria fumi-
gata), Madagascar hissing cockroach (Gromphadorhina portentosa), speckled cockroach (Nau-
phoeta cinerea), Turkestan cockroach (Shelfordella lateralis) and oriental cockroach (Blatta
orientalis). Cockroaches can live for up to 12 months, and the largest individuals reach up to 8

cm in length. Cockroaches are increasingly popular in human nutrition, and they are a part of

the local cuisine in various regions of the world [15].

Migratory locusts are members of the family Acrididae, order Orthoptera. Insects have up

to 9 cm in length and live for up to 3 months. Locusts are consumed by amphibians, reptiles

and humans, mainly in Africa and Asia. Locusts contain up to 28% protein and 11.5% fat,

including up to 54% of unsaturated fats [16]. Nosema spp. and Gregarine spp. are the most

prevalent locust parasites [17].

The aim of this study was to identify and evaluate the developmental forms of parasites col-

onizing edible insects in household farms and pet stores in Central Europe and to determine

the potential risk of parasitic infections for humans and animals.

Role of edible insects in the transmission of parasitic diseases
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Materials and methods

Materials

The experimental material comprised samples of live insects (imagines) from 300 household

farms and pet stores, including 75 mealworm farms, 75 house cricket farms, 75 Madagascar

hissing cockroach farms and 75 migrating locust farms from Czechia, Germany, Lithuania,

Poland, Slovakia and Ukraine. Owners/breeders of household farms and cultures from pet

stores gave permission for the study to be conducted on their insect farms. The studies were

carried out in the years 2015-2018. Up to 3 farms were tested from a single location (eg. city).

Farm stock was purchased from suppliers in Europe, Asia and Africa. Forty insects were

obtained from every mealworm and cricket farm, and they were pooled into 4 samples of 10

insects each. Ten insects were sampled from every cockroach and locust farm, and they were

analyzed individually.

Methodology

Insects were immobilized by inducing chill coma at a temperature of -30˚C for 20 minutes.

Hibernation was considered effective when legs, mandibles and antennae did not respond to

tactile stimuli. Hibernating insects were decapitated and dissected to harvest digestive tracts.

Digestive tracts were ground in a sieve and examined by Fulleborn’s floatation method with

Darling’s solution (50% saturated NaCl solution and 50% glycerol). The samples were centri-

fuged at 3500 x for 5 minutes. Three specimens were obtained from every sample, and they

were examined under a light microscope (at 200x, 400x and 1000x magnification). The

remaining body parts were examined for the presence of parasitic larvae under the Leica

M165C stereoscopic microscope (at 7.2x-120x magnification) The remaining body parts were

analyzed according the method proposed by Kirkor with some modifications, by grinding

body parts in a mortar with a corresponding amount of water and 0.5 ml of ether. The result-

ing suspensions were filtered into test tubes to separate large particles and were centrifuged at

3500x for 5 minutes. After loosening the debris plug, the top three layers of suspension were

discarded. Three specimens were obtained, and they were analyzed according to the procedure

described above. Parasites were identified to genus/species level based on morphological and

morphometric parameters with the use of an Olympus image acquisition system and Leica

Application Suite program based on the reference sources in Pubmed [18–36]. Parasites were

identified to species level by Ziehl-Neelsen staining [37]. The owners of farms where human

parasites were detected were advised to eliminate their stock. Farm owners were surveyed

with the use of a questionnaire to elicit information about the origin of insects (to determine

whether the stock was supplemented with insects from other farms, whether the farm was a

closed habitat, whether stock was obtained only from Europe, or also from Asia/Africa), insect

nutrition (whether insects were fed specialized feeds, fresh products, kitchen discards or locally

collected sources of feed), contact with other animals or animal feces.

Statistical analysis

The prevalence of parasitic species was determined for every insect species. The data were

tested for normal distribution with the Kolmogorov-Smirnov test. The assumptions of linear-

ity and normality were tested before statistical analysis. Linearity was analyzed based on two-

dimensional distribution of the evaluated variables with the use of histograms and normal

probability plots of the residuals. The significance of the correlations between insect species

and questionnaire data was analyzed in a logistic regression model, where the dependent vari-

able was dichotomous (0 or 1, presence/absence of parasites) and the independent variables

Role of edible insects in the transmission of parasitic diseases
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were: origin of insects (insects purchased in Europe only/insects imported from Asia and

Africa), Insect stock rotation system (insects from the evaluated farm only- close rotation/the

farm was supplemented with insects from other farms- open rotation), nutrition (insects fed

only fresh products or specialized feeds/insects fed kitchen discards) and direct/indirect con-

tact with animals (yes/no). The correlations between the identified parasites were analyzed

with the use of Yule’s Q and Cramer’s V, subject to the number of the evaluated variables. The

examined associations were weak when the value of V/Q approximated 0, and the correlations

were stronger when V/Q approximated +1/-1. The results were processed statistically in the

Statistica 13.1 program with a StatSoft medical application.

Results

Prevalence

Parasitic developmental forms were detected in 244 (81.33%) out of 300 (100%) examined

insect farms. In 206 (68.67%) of the cases, the identified parasites were pathogenic for insects

only; in 106 (35.33%) cases, parasites were potentially parasitic for animals; and in 91 (30.33%)

cases, parasites were potentially pathogenic for humans. Nosema spp. spores were detected in

27 (36.00%) cricket farms and 35 (46.67%) locust farms. The presence of Cryptosporidium spp.

was observed in 12 (16%) mealworm farms, 5 (6.67%) cricket farms, 13 (17.33%) cockroach

farms and 4 (5.33%) locust farms. Forty-four (58.67%) mealworm farms, 30 (40.00%) cricket

farms, 57 (76%) cockroach farms and 51 (68.00%) locust farms were infested with Gregarine
spp., including Steganorhynchus dunwodyii,Hoplorhynchus acanthatholius, Blabericola haasi,
Gregarina blattarum, G. niphadrones, Gregarina cuneata and Gregarina polymorpha. Isospora
spp. were detected in 7 (9.33%) mealworm farms, 4 (5.33%) cricket farms, 9 (12.00%) cock-

roach farms and 8 (10.67%) locust farms. Eleven (14.67%) mealworm farms, 13 (17.33%) cock-

roach farms and 9 (12.00%) locust farms were infested with Balantidium spp. including B. coli
and B. blattarum. The presence of Entamoeba spp., including E. coli, E. dispar, E. hartmanii
and E. histolytica, was determined in 9 (12%) mealworm farms, 14 (18.67%) cockroach farms

and 4 (5.33%) locust farms. Seventeen (22.67%) cockroach farms were colonized by Nyc-
totherus spp., including N. ovalis and N. periplanetae. Tapeworm cysticercoids, including

Hymenolepis nana,H. diminuta and Raillietina spp., were detected in 9 (12%) mealworm

farms, 3 (4%) cricket farms, 4 (5.33%) cockroach farms and 3 (4.00%) locust farms. Nematodes

of the order Gordiidea colonized 6 (8.00%) cricket and locust farms. Hammerschmidtiella die-
signi was detected in 35 (46.67%) cockroach farms. Steinernema spp. was identified in 22

(29.33%) cricket farms, and Pharyngodon spp.—in 14 (18.67%) locust farms. The presence of

Physaloptera spp. was observed in 4 (5.4%) mealworm farms, 2 (2.67%) cricket farms, 9

(12.00%) cockroach farms and 7 (9.33%) locust farms. Five (6.67%) mealworm farms and 7

(9.33%) cockroach farms were infested with Spiruroidea. Thelastomidae spp. was detected in

10 (13.33%) cricket and locust farms. Thelastoma spp. was identified in 58 (77.33%) cockroach

farms. Acanthocephala were observed in 2 (2.67%) mealworm farms and 3 (4.00%) cockroach

farms. Two (2.67%) cockroach farms were infested with Pentastomida. The presence of Acari-

dae, including house dust mites, was observed in 35 (46.67%) mealworm farms, 15 (20.00%)

cockroach farms and 7 (9.33%) locust farms. In the group of samples collected from mealworm

farms, Cryptosporidium spp. were noted in 37 (12.33%) samples, Gregarine spp. were detected

in 99 (33.00%) samples, Isospora spp.—in 12 (4%) samples, Entamoeba spp.—in 12 (4.00%)

samples, Balantidium spp.—in 14 (4.67%) samples, cysticercoids—in 18 (6.00%) samples,

Pharyngodon spp.—in 10 (3%) of samples, Physaloptera spp.—in 15 (5.00%) samples, Spiruroi-
dea—in 6 (2.00%) samples, Acanthocephala spp.—in 2 (0.67%), and Acaridae in 80 (26.67%)

samples. In the group of samples collected from cricket farms, Nosema spp. were identified in
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74 (24.67%) samples, Cryptosporidium spp.—in 5 (1.67%) samples Isospora spp.—in 8 (2.67%)

samples, Gregarine spp.—in 72 (24.00%) samples, cysticercoids—in 4 (1.33%) samples, Physa-
loptera spp.—in 4 (1.33%) samples, Steinernema spp.—in 11 (3.67%) samples, and nematodes

of the order Gordiidea—in 19 (6.33%) samples. In the group of samples obtained from cock-

roach farms, the presence of Cryptosporidium spp. was determined in 89 (11.87%) samples,

Gregarine spp.—in 236 (31.47%) samples, Isospora spp.—in 16 (2.13%) samples, Nyctotherus
spp.—in 57 (7.60%) samples, Entamoeba spp.—in 34 (4.53%) samples, Balantidium spp.—in

35 (4.67%) samples, cysticercoids—in 4 (0.53%) samples, Pharyngodon spp.—in 20 (2.67%)

samples, Physaloptera spp.—in 23 (3.07%) samples, Spiruroidea—in 14 (1.87%) samples, The-
lastoma spp.—in 270 (36.00%) samples, H. diesigni—in 143 (19.07%) samples, Acanthocephala

spp.—in 5 (0.67%) samples, Pentastomida spp.—in 5 (0.67%) samples, and Acaridae—in 29

(3.87%) samples. The following parasites were identified in locust farms: Nosema spp.—in 125

(16.67%) samples, Cryptosporidium spp.—in 13 (1.73%) samples, Gregarine spp.—in 180

(24.00%) samples, Isospora spp.—in 15 (2.00%) samples, Entamoeba spp. in 9 (1.20%) samples,

Balantidium spp.—in 14 (1.87%) samples, cysticercoids—in 15 (2.00%) samples, Physaloptera
spp.—in 17 (2.27%) samples, Steinernema spp.—in 31 (4.13%) samples, nematodes of the

order Gordiidea—in 7 (0.93%) samples, and Acaridae—in 31 (4.13%) samples. Detailed results

of the parasitological examination have been placed in Table 1.

Probability of parasite occurrence

The risk of Cestoda, Acanthocephala and Acaridae infections was significantly higher in

insects imported from Africa and Asia than in insects purchased from European suppliers.

Table 1. Type / Species and developmental forms of parasites found in the examined insects in the examined collective / individual samples depending on the place

of detection.

Parasite (developmental forms) Mealworm beetle House cricket Madagascar hissing

cockroach

Migrating locust

g.t. r.b. g.t. r.b. g.t. r.b. g.t. r.b.

Nosema spp. (spores) - - 74 - - - 125 -

Cryptosporidium spp. (oocysts) 31 10 5 2 57 35 13 4

Gregarine spp. (oocysts, sporozoites) 99 - 72 - 236 - 180 -

Isospora spp. (oocysts) 3 12 1 8 6 16 1 15

Balantidium spp. (amoeba, cysts) 1 14 - - 29 8 5 14

Entamoeba spp. (amoeba, cysts) 3 11 - - 30 7 1 9

Nyctotherus spp. (amoeba, cysts) - - - - 57 2 - -

Cestoda (eggs, cysticercoids) 8 22 - 4 3 4 2 15

Gordiidae spp (cysts, juveniles) - - - 19 - - 16 -

H. diesigni(adult forms, eggs) - - - - 143 - - -

Pharyngodon spp. (L3 larvae) - 13 - - - 22 - -

Physaloptera spp. (L3 larvae) - 19 - 4 - 42 - 17

Spiruroidea (L3 larvae) - 8 - - - 14 - -

Thelastomatidae (adult forms, eggs) - - 47 - - - 31 -

Steinernema spp. (adult forms) - - - 11 - - - 17

Thelastoma spp. (adult forms, eggs) - - - - 270 - - -

Acanthocephala spp. (cystacanths) - 2 - - - 5 - -

Pentastomida (nymphs) - - - - - 5 - -

Acaridae (eggs, nymphs, adult forms) 4 80 - - 2 29 1 31

g.t.—gastrointestinal tract; r.b.—rest of the body

https://doi.org/10.1371/journal.pone.0219303.t001
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Farms whose stock was supplemented with insects from other farms were more frequently col-

onized byNosema spp., Isospora spp., Cryptosporidium spp., Entamoeba spp., Cestoda, Pharyn-
godon spp., Gordius spp., Physaloptera spp., Thelastoma spp. and H. diesigni than closed farms.

The risk of infection with Cryprosporidium spp., Gregarine spp, Balantidium spp, Entamoeba
spp., Steinernema spp., Gordiidea,H. diesigni and Acaridae was higher in insects fed kitchen

discards and locally collected feed sources than insects fed only fresh products or specialized

feeds. Insects that came into direct or indirect contact with animals were at higher risk of expo-

sure to Isospora spp., Cryptosporidium spp., Cestoda, Pharyngodon spp., Physaloptera spp.,

Thelastoma spp. and H. diesigni, but at lower risk of exposure to Nyctotherus spp. The statisti-

cal significant results of logistic regression were placed in Table 2.

Coinvasions

Significant correlations were observed between the presence of Nosema spp. and Isospora spp.

(V = 0.75), Gregarine spp. (Q = −0.27) Steinernema spp. (Q = 0.42) and Gordiidae spp

Table 2. Logistic regression model, showing statistically significant relationships between the parasite species and the origin of insects, insect stock rotation system,

type of feeding and contact with animals.

Nosema spp. rotation <0.000001 2.28 0.18 33.99 <0.000001 2.90 2.03-4.14

Isospora spp. rotation 0.000043 28.88 0.31 10.45 0.0012 2.74 1.49-5.06

animals 12.03 0.32 3.95 0.047 1.87 1.01-3.48

Cryprosporidium spp. rotation 0.00001 14.54 0.22 15.53 0.00002 5.11 1.03-14.65

feeding 17.76 0.19 19.22 0.0013 10.21 0.81-6.45

animals 4.03 0.34 7.81 0.001 3.62 1.95-12.83

Gregarine spp. feeding 0.000001 11.85 0.11 21.40 0.000004 1.65 1.33-2.04

Nyctotherus spp. animals 0.020 49.02 0.29 8.29 0.004 0.44 0.25-0.77

Balantidium spp. feeding 0.000001 6.43 0.32 15.63 0.000072 3.52 1.69-6.57

Entamoeba spp. rotation 0.000022 4.50 0.54 5.78 0.016 0.27 0.095-0.79

feeding 3.58 0.34 11.03 0.000098 3.13 1.60-6.13

Cestoda origin 0.000064 11.66 1.06 4.71 0.03 10.07 1.25-81.05

rotation 8.38 4.46 4.59 0.035 2.92 1.08-7.92

animals 2.48 1.50 6.46 0.011 18.54 1.95-177.14

Pharyngodon spp. rotation 0.000001 8.24 0.63 4.25 0.040 0.27 0.078-0.93

animals 11.21 0.73 14.10 0.00017 15.73 3.73-66.31

Steinernema spp. feeding 0.047 15.26 0.28 5.46 0.019 1.94 1.11-3.39

Gordiidae rotation 0.000001 1.44 0.41 5.87 0.02 2.69 1.21-5.97

feeding 4.89 1.03 18.67 0.000016 87.54 11.51-665.54

Physaloptera spp. rotation 0.000001 12.28 0.36 8.62 0.0033 0.35 0.17-0.70

animals 7.45 0.29 28.18 <0.000001 4.75 2.67-8.45

Thelastoma spp. rotation 0.00087 33.09 0.19 4.61 0.031 1.51 1.04- 2.21

animals 9.44 0.16 4.89 0.0002 1.26 1.26-2.43

Hammerschmidtiella diesigni rotation <0.000001 11.15 0.22 14.09 0.00017 2.32 1.49-3.59

feeding 7.64 0.22 12.41 0.00042 2.18 1.41-3.73

animals 5.82 0.20 7.47 0.0062 1.75 1.17-2.61

Acanthocephala origin 0.00001 14.23 0.55 5.11 0.02 9.11 1.67-73.01

Acaridae origin 0.000001 5.89 0.20 13.72 0.00021 2.08 1.41-3.06

feeding 7.43 0.20 11.52 0.00069 1.99 1.34-2.96

X2—Chi-square test; W—Wald statistic; 95% CI—95% Confidence Interval; Origin: 0—specimens in the breeding came from Europe, 1- breeding individuals imported

from Asia or Africa; Rotation: 0—individuals from farms with closed animal rotation, 1—individuals from farms with open animal rotation; Feeding: 0—insects fed

with fresh products or food, 1—insects fed with waste; Animals: 0—no contact with animals, 1—contact with animals.H.diesigni—Hammerschmidtiella diesigni.

https://doi.org/10.1371/journal.pone.0219303.t002
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(Q = 0.45). The presence of Isospora spp. was also significantly correlated with Gregarine spp.

(Q = -0.22), cestoda (Q = 0.63), Gordiidae spp. (Q = 0.73) Thelastoma spp. (Q = 0.96). The

occurrence of Nyctotherus spp. was correlated with Spiruroidea (Q = 0.55), Thelastoma spp.

(Q = 0.52) andH. diesigni (Q = 0.18). Correlations were observed between Gregarine spp. and

Hymenolepis diminuta (Q = 0.48), Pharyngodon spp. (Q = 0.30), Steinernema spp. (Q = 0.33),

Physaloptera spp. (Q = 0.32), Spiruroidea. (Q = 0.44), Thelastoma spp. (Q = 0.51),H. diesigni
(Q = 0.31) and Acanthocephala (Q = 0.44). The presence of Cryptosporidium spp. was signifi-

cantly correlated with Balantidium spp. (Q = 0.21), Entamoeba spp. (Q = 0.33), Nyctotherus
spp. (Q = −0.41),H. diesigni (Q = 0.49) and Acaridae (Q = 0.17).

Discussion

Due to the lack of registration obligation, we are currently unable to estimate the exact number

of such farms in the surveyed area. The number of farms obtained for the experiment resulted

from an indicatively calculated minimum number of samples. To get the most reliable results

from a single location (eg. city), we tested up to 3 farms. The selection of insect species for

research resulted from the dissemination of these animals among breeders. In case we have

shown that insects came from the same supplier, we did not continue further research.

Survey questions regarding the tested insect farms are related to the observed activities

practiced by breeders. Breeders wanting to set up or enlarge their farms often order insects

from the countries of origin or from places where the import of such food is cheaper than

from Europe. In our opinion, such a phenomenon is a big threat due to the fact that there may

be a risk of catching animals from the environment, and thus introducing new parasites, both

pathogenic for insects as well as humans and animals. Some amateur breeders are not inter-

ested in the quality of feed introduced into the farm. They obtain insect feed from the environ-

ment (green fodder, wild fruit trees) or use leftovers from feeding other animals. Edible insects

may also have direct or indirect contact with animals. Among the practices we can include re-

depositing insects to farms after the animal has not eaten them. These insects moving around

the animal habitat (eg. terrariums) can mechanically introduce potential pathogens specific to

animals.

During the research in individual farms, we observed unethical practices of individual

breeders, such as feeding insects with animal feces from a pet shop, feeding insects with

corpses of smaller animals, or feeding insects with moldy food and even raw meat. These prac-

tices significantly reduce the quality of the final product and undermine the microbiological /

parasitological safety of such food. Currently, however, there are no regulations regarding zoo-

hygienic conditions and the welfare of these animals as potential animals for food. Although

the research was conducted on amateur insect farms, most were not found to be seriously

flawed. Breeding of edible insects carried out in places not intended for this purpose (houses)

can lead to additional danger for humans. In the course of the study, we recorded individual

cases of spreading insects from farms, which resulted in rooms infestation, eg. by cockroaches

or crickets. Another example is the possibility of transmission of parasites such as Cryptospo-
ridium spp. on human aerogenically, therefore if the farms are unprotected well or there is a

lack of hygiene in contact with insects, such invasions may occur.

Parasites pathogenic for insects

The analyzed farm samples were colonized by developmental forms of parasites that are spe-

cific to insects, including Nosema spp, Gregarine spp., Nyctotherus spp., Steinernema spp., Gor-

diidae,H. diesigni, Thelastomidae, and Thelastoma spp. These pathogens constitute the most

prevalent parasitic flora, and massive infections can compromise insect health and decrease
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farm profits [38, 39]. According to Van der Geest et al. [40] and Johny et al. [41], the above

pathogens have been implicated as pseudo-parasites of humans and animals. However, the

impact of insect-specific parasites on humans has not yet been fully elucidated. Pong et al. [42]

argued that Gregarine spp., a parasite specific to cockroaches, could cause asthma in humans.

The results of the survey conducted in our study indicate that insect farming can increase the

human exposure to pathogens and allergens [43, 44].

Nosemosis is a disease caused by microsporidian parasites, and it can compromise the

health of crickets and locusts. However, nosema parasites also control cricket and locust popu-

lations in the natural environment [45–47]. Lange and Wysiecki [48] found that Nosema locus-
tae can be transmitted by wild locusts to a distance of up to 75 km. This parasite is also readily

transmitted between individual insects, which can contribute to the spread of infections in

insect farms. Johnson and Pavlikova [49] reported a linear correlation between the number of

Nosema spp. spores in locusts and a decrease in dry matter consumption. The results of our

study indicate that Nosema spp. infections can decrease profits in insect farming.

Gregarine spp. are parasitic protists which colonize the digestive tracts and body cavities of

invertebrates. According to Kudo [50], Gregarines are non-pathogenic commensal microor-

ganisms, but recent research indicates that these protists are pathogenic for insects. These

microorganisms utilize the nutrients ingested by the host, compromise the host’s immune

function and damage the walls of host cells [41]. Massive infestations can lead to intestinal

blockage in insects [38]. Lopes and Alves [39] found that cockroaches infected with Gregarine
spp. were characterized by swollen abdomens, slower movement, darkened bodies and putrid

smell indicative of septicemia. Gregarines were also found to compromise reproduction,

shorten the life cycle and increase mortality in insects [38, 51, 52]. A study of dragonflies

revealed that Gregarine spp. can decrease fat content and muscle strength in insects [52].

Johny et al. [41] demonstrated that metronidazole and griseofluvin can decrease Gregarine
spp. counts in insects. The results presented by Johny et al. [41] can be used to develop parasite

management strategies and minimize the negative effects of Gregarine spp. in insect farms.

Lopes and Alves [39] demonstrated that cockroaches infected with Gregarine spp. were more

susceptible toMetarhizium anisopliae and triflumuron, which could imply that diseased

insects are more sensitive to other pathogens. A review of the literature suggests that Gregarine
spp. can negatively affect the health of farmed insects [38, 39, 41, 51, 52].

Nyctotherus spp. is a parasite or an endosymbiont which colonizes the intestinal system of

insects. Gijzen et al. [53] found a strong correlation between the size of theN. ovalis population

and carboxymethyl-cellulase and filter paper digesting activity in cockroach intestines, which

was correlated with those insects’ ability to produce methane. The results of our study indicate

that the ciliate N. ovalis should be consider as commensal microflora of cockroach gastrointes-

tinal tract. Nyctotherus spp. were less likely to be detected in insects that had previous contact

with animals. The above could imply that insects whose digestive tracts are colonized by these

parasites are more readily consumed by animals. Nyctotherus ovalis is rarely pathogenic for

animals. Satbige et al. [54] reported on two turtles where N. ovalis infection caused diarrhea,

dehydration and weight loss.

Gordiidae, also known as horsehair worms, are parasitic nematodes with a length of up to

1.5 m that colonize invertebrates. When consumed by insects, parasitic larvae penetrate the

intestinal wall and are enveloped by protective cysts inside the gut. Gordius spp. are generally

specific to insects, but these nematodes have also been detected in humans and animals. Sev-

eral cases of parasitism and pseudo-parasitism by gordiid worms from various locations,

including France, Italy, Bavaria, Dalmatia, East Africa, Southeast Africa, West Africa, Trans-

vaal, Chile, United States and Canada, were described in the literature [55]. Horsehair worms

were also identified in vomit and feces [56, 57]. However, none of the described parasitic
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invasions were pathogenic for humans. In the present study, parasites were detected in insects

fed kitchen discards or locally collected food sources.

Hammerschmidtiella diesigni, Thelastoma spp. and Thelastomatidae are nematodes specific

to invertebrates. Nematodes colonizing insect digestive tracts are generally regarded as com-

mensal organisms. Taylor [58] demonstrated that Leidynema spp. exerted a negative effect on

hindgut tissues in insects. Similarly to the pathogens identified in our study, Leidynema spp.

belong to the family Thelastomatidae. Capinera [59] demonstrated that these nematodes can

increase mortality in cockroach farms. In our study, insects colonized byH. diesigni and The-
lastoma spp. were characterized by lower fat tissue content. McCallister [60] reported a higher

prevalence ofH. diesigni and T. bulhoes nematodes in female and adult cockroaches, but did

not observe significant variations in differential hemocyte counts or hemolymph specific grav-

ity [60].

Steinernema spp. is an entomopathogenic nematode whose pathogenicity is linked with the

presence of symbiotic bacteria in parasitic intestines. These nematodes are used in agriculture

as biological control agents of crop pests [61], which can promote the spread of infection to

other insects. In our study, insects infected with Steinernema spp. were probably fed plants

contaminated with parasite eggs.

Parasites pathogenic for humans and animals

Cryptosporidium spp. are parasites that colonize the digestive and respiratory tracts of more

than 280 vertebrate and invertebrate species. They have been linked with many animal diseases

involving chronic diarrhea [62–64]. According to the literature, insects can serve as mechani-

cal vectors of these parasites. Flies may be vectors of Cryptosporidium spp. that carry oocysts in

their digestive tract and contaminate food [65, 66]. Earth-boring dung beetles [67] and cock-

roaches [68] can also act as mechanical vectors of these parasites in the environment. However,

the prevalence of Cryptosporidium spp. in edible insects has not been documented in the litera-

ture. In our study, Cryptosporidium spp. were detected in the digestive tract and other body

parts of all evaluated insect species. In our opinion, insects are an underestimated vector of

Cryptosporidium spp., and they significantly contribute to the spread of these parasites.

Isospora spp. are cosmopolitan protozoa of the subclass Coccidia which cause an intestinal

disease known as isosporiasis. These parasites pose a threat for both humans (in particular

immunosuppressed individuals) and animals. The host becomes infected by ingesting oocytes,

and the infection presents mainly with gastrointestinal symptoms (watery diarrhea). Accord-

ing to the literature, cockroaches, houseflies and dung beetles can act as mechanical vectors of

Isospora spp. [69, 70]. In our study, insect farms were contaminated with this protozoan,

which could be the cause of recurring coccidiosis in insectivores. Isospora spp. were detected

on the surface of the body and in the intestinal tracts of insects. In our opinion, the presence of

Isospora spp. in edible insects results from poor hygiene standards in insect farms.

Balantidium spp. are cosmopolitan protozoans of the class Ciliata. Some species constitute

commensal flora of animals, but they can also cause a disease known as balantidiasis. Accord-

ing to the literature, these protozoans are ubiquitous in synanthropic insects [68, 71]. In some

insects, Balantidium spp. is considered a part of normal gut flora, and it can participate in

digestive processes [72]. Insects can be vectors of Balantidium spp. pathogenic for humans and

animals [73]. In our study, potentially pathogenic ciliates were detected even in insect farms

with closed habitats.

Entamoeba spp. are amoeboids of the taxonomic group Amoebozoa which are internal or

commensal parasites in humans and animals. The majority of Entamoeba spp., including E.
coli, E. dispar and E. hartmanni, identified in our study belong to non-pathogenic commensal
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gut microflora. However, pathogenic E. histolytica [74], and E. invadens were also detected in

the presented study. Entamoeba histolytica can cause dysentery in humans and animals,

whereas E. invadens is particularly dangerous for insectivorous animals such as reptiles and

amphibians. Other authors demonstrated that E. histolytica is transmitted by insects in the nat-

ural environment [68, 75].

Cestoda colonize insects as intermediate hosts. Cysticercoids, the larval stage of tapeworms

such as Dipylidium caninum,Hymenolepis diminuta,H. nana,H. microstoma,H. citelli,Mono-
bothrium ulmeri and Raillietina cesticillus, have been identified in insects [76–78]. Insects have

developed immune mechanisms that inhibit the development of these parasites [78, 79]. Tape-

worms can induce behavioral changes in insects, such as significant decrease in activity and

photophobic behavior [80]. Behavioral changes can prompt definitive hosts to consume insects

containing cysticercoids. Our study demonstrated that insect farms which are exposed to con-

tact with animals and farms which are supplemented with insects from external sources are at

greater risk of tapeworm infection. Similar results were reported in studies of synanthropic

insects [81, 82]. In our study, both cysticercoids and eggs were detected, which suggests that

farms can be continuously exposed to sources of infection. However, the correlations between

edible insects and the prevalence of taeniasis in humans and animals have never been investi-

gated in detail. Temperature has been shown to significantly influence the development of

tapeworm larvae in insects [83, 84]. In our opinion, the maintenance of lower temperature in

insect farms could substantially decrease the reproductive success of tapeworms, and edible

insects could be thermally processed before consumption to minimize the risk of tapeworm

infection. The results of our study indicate that edible insects play an important role in the

transmission of tapeworms to birds, insectivorous animals and humans.

Pharyngodon spp. are parasitic nematodes that colonize exotic animals in both wild and

captive environments [85, 86]. These parasites are more prevalent in captive pets than in wild

animals [85, 86], which could be correlated with edible insects. In our study, insects that had

previous contact with animals were significantly more often vectors of Pharyngodon spp. our

results indicate that insects act as mechanical vectors for the transmission of the parasite’s

developmental forms. The role of insects as definitive hosts for Pharyngodon spp. has not been

confirmed by research. Human infections caused by Pharyngodon spp. had been noted in the

past [87], but these nematodes are no longer significant risk factors of potential zoonotic

disease.

Physaloptera spp. form cysts in the host’s hemocoel approximately 27 days after ingestion

[88]. Cawthorn and Anderson [89], demonstrated that crickets and cockroaches can act as

intermediate hosts for these nematodes. Our study is the first ever report indicating that Physa-
loptera spp. can be transmitted by mealworms and migratory locusts. Insects can act as vectors

in the transmission of these parasites, in particular to insectivorous mammals. Despite the

above, definitive hosts are not always infected [88, 89]. Cockroaches play an important role in

the transmission of the discussed parasites, including zoological gardens [90]. A study of

experimentally infected flour beetles (Tribolium confusum) demonstrated that Spirurids can

also influence insect behavior [91]. Behavioral changes increase the risk of insectivores select-

ing infected individuals.

Spiruroidea are parasitic nematodes which require invertebrate intermediate hosts, such as

dung beetles or cockroaches, to complete their life cycle [92]. In grasshoppers, Spirura infundi-
buliformis reach the infective stage in 11-12 days at ambient temperatures of 20-30˚C [93].

Research has demonstrated that these insects are reservoirs of Spiruroidea in the natural envi-

ronment [94]. These parasites form cysts in insect muscles, hemocoel and Malpighian tubules.

They colonize mainly animals, but human infections have also been reported. According to

Haruki et al. [95], Spiruroidea can infect humans who accidentally consume intermediate
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hosts or drink water containing L3 larvae of Gongylonema spp. (nematodes of the superfamily

Spiruroidea). The prevalence of Spiruroidea in insects has never been studied in Central Euro-

pean insects. In our study, these nematodes were identified mainly in farms importing insects

from outside Europe.

Acanthocephala are obligatory endoparasites of the digestive tract in fish, birds and mam-

mals, and their larvae (acanthor, acanthella, cystacanth) are transmitted by invertebrates. The

prevalence of these parasites in wild insects has never been studied. In cockroaches, Acantho-

cephala species such asMoniliformis dubius andMacracanthorhynchus hirudinaceus penetrate

the gut wall and reach the hemocoel [96]. The outer membrane of the acanthor forms micro-

villi-like protuberances which envelop early-stage larvae [97]. The influence of acanthocepha-

lans on insects physiology has been widely investigated. The presence ofMoniliformis
moniliformis larvae in cockroach hemocoel decreases immune reactivity [98], which, in our

opinion, can contribute to secondary infections. Thorny-headed worms influence the concen-

tration of phenoloxidase, an enzyme responsible for melanin synthesis at the injury site and

around pathogens in the hemolymph [99, 100]. There are no published studies describing the

impact of acanthocephalans on insect behavior. A study of crustaceans demonstrated that the

developmental forms of these parasites significantly increased glycogen levels and decreased

lipid content in females [101]. Thorn-headed worms also compromise reproductive success in

crustaceans [102]. Further research into arthropods is needed to determine the safety of insects

as sources of food and feed. Acanthocephalans have been detected in insectivorous reptiles

[103], which could indicate that insects can act as vectors for the transmission of parasitic

developmental forms.

Pentastomida are endoparasitic arthropods that colonize the respiratory tract and body cav-

ities of both wild and captive reptiles [104]. Pentastomiasis is considered a zoonotic disease, in

particular in developing countries [105]. The presence of mites, which resemble pentastomid

nymphs during microscopic observations, should be ruled out when diagnosing pentastomia-

sis in insect farms. The role of insects of intermediate hosts/vectors of pentastomid nymphs

has not yet been fully elucidated. However, Winch and Riley [106] found that insects, includ-

ing ants, are capable of transmitting tongue worms and that cockroaches are refractory to

infection with Raillietiella gigliolii. Esslinger [107], and Bosch [108], demonstrated that Raillie-
tiella spp. rely on insects as intermediate hosts. Our study confirmed the above possibility, but

we were unable to identify the factors which make selected insects the preferred intermediate

hosts. The choice of intermediate host is probably determined by the parasite species. We were

unable to identify pentastomid nymphs to species level due to the absence of detailed morpho-

metric data. Our results and the findings of other authors suggest that insects could be impor-

tant vectors for the transmission of pentastomids to reptiles and amphibians [106, 109].

Prevalence

The prevalence of parasitic infections in insects has been investigated mainly in the natural

environment. Thyssen et al. [110] found that 58.3% of German cockroaches were carriers of

nematodes, including Oxyuridae eggs (36.4%), Ascaridae eggs (28.04%), nematode larvae

(4.8%), other nematodes (0.08%) and Toxocaridae eggs (0.08%). Cestoda eggs (3.5%) were also

detected in the above study. Chamavit et al. [68] reported the presence of parasites in 54.1% of

cockroaches, including Strongyloides stercoralis (0.8%), Ascaris lumbricoides (0.3%), Trichuris
trichuria (0.3%), Taenia spp. (0.1%), Cyclospora spp. (1.3%), Endolimax nana (1.3%), B. homi-
nis (1.2%), Isospora belli (9.6%), Entamoeba histolytica/E. dispar (4.6%), Cryptosporidium spp.

(28.1%), Chilomastix mesnilli (0.3%), Entamoeba coli (4.0%), Balantidium coli (5.8%) and Ioda-
moeba butschlii (0.1%). Human-specific parasites such as Oxyuridae, Ascaridae, Trichuris spp.
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and Taenia spp. were not detected in our study, which suggests that the analyzed insects did

not have access to the feces of infected humans. In a study of wild cockroaches in Iraq, the

prevalence of parasitic developmental forms was nearly twice higher (83.33%) than in our

study [82]. Iraqi cockroaches carried E. blatti (33%), N. ovalis (65.3%),H. diesingi (83.3%),

Thelastoma bulhoe (15.4%), Gordius robustus (1.3%), Enterobius vermicularis, (2%) and Ascaris
lumbricoides (1.3%). Unlike in our experiment,H. diesigni was the predominant nematode

species in Iraqi cockroaches. The cited authors did not identify any developmental forms of

tapeworms. Tsai and Cahill [111] analyzed New York cockroaches and identified Nyctotherus
spp. in 22.85% of cases, Blatticola blattae in 96.19% of cases, and Hammerschmidtiella diesingi
in 1.9% of cases. The results of our study suggest that farmed edible insects are less exposed to

certain parasites (Ascaridae, Enterobius spp.) that are pathogenic for humans and animals. The

absence of human-specific nematodes and roundworms could be attributed to the fact that the

analyzed farms were closed habitats without access to infectious sources. In the work of Fote-

dar et al. [112], the prevalence of parasites was determined at 99.4% in hospital cockroaches

and at 94.2% in household cockroaches. The percentage of infected cockroaches was much

higher than in our study, which could indicate that environmental factors significantly influ-

ence the prevalence of selected parasites species. Our observations confirm that the risk of

parasitic infections can be substantially minimized when insects are farmed in a closed envi-

ronment. The high prevalence of selected developmental forms of parasites in the evaluated

insect farms could be attributed to low hygiene standards and the absence of preventive treat-

ments. Parasitic fauna in insect farms have never been described in the literature on such scale.

A study of cockroaches from the laboratory stock of the Wrocław Institute of Microbiology

(Poland) revealed the presence of ciliates in all insects and the presence of nematodes in 87%

of insects [113]. These results could be attributed to the fact that all examined insects were

obtained from a single stock, which contributed to the re-emergence of parasitic infections.

Similar observations were made in several insect farms in the current study.

Edible insect processing like cooking or freezing may inactivate parasitic developmental

forms. Tanowitz et al. [114] reported that Teania solium is killed by cooking the pork to an

internal temperature of 65˚C or freezing it at 20˚C for at least 12 hours. Smoking, curing or

freezing meat may also inactivate protozoa like Toxoplasma gondii [115]. The use of micro-

waves may be ineffective [115]. On the example of Anisakis simplex, it has been proven that

cooking and freezing can significantly improve food safety in relation to this nematode [116].

Also boiling insect for 5 min is an efficient process for eliminating Enterobacteriaceae [117].

Simple preservation methods such as drying/acidifying without use of a refrigerator were

tested and considered promising [117]. However, there is a need of thorough evaluation of

insect processing methods, including temperatures and time of cooking / freezing to prevent

possible parasitic infections. Despite, food preparation processes parasite allergens may still be

detected [116].

Insects may also be a bacterial vector / reservoir, but currently there are no data available

for bacteriological tests in breeding insects. It has been proven that insects can be an important

epidemiological factor in the transmission of bacterial diseases [3]. One of the most important

bacteria that are transmitted by insects include Campylobacter spp. [118] and Salmonella spp.

[119]. Kobayashi et al. [120] showed that insect may be also a vector of Escherichia coli 0157:

H7. Free-living cockroaches harbored pathogenic organisms like Escherichia coli, Streptococcus
Group D, Bacillus spp., Klebsiella pneumoniae, and Proteus vulgaris [121]. In vitro studies have

shown that some species of insects may also be the reservoir of Listeria monocytogenes [122].

In our opinion further research should also focus on the microbiological safety of edible insect

breeding.
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Due to the fact that the identification of parasites was based on morphological and morpho-

metric methods, further molecular research should focus on the precise determination of indi-

vidual species of identified parasites in order to determine the real threat to public health. The

results of this study indicate that edible insects play an important role in the epidemiology of

parasitic diseases in vertebrates. Edible insects act as important vectors for the transmission

of parasites to insectivorous pets. Insect farms that do not observe hygiene standards or are

established in inappropriate locations (eg. houses) can pose both direct and indirect risks for

humans and animals. Therefore, farms supplying edible insects have to be regularly monitored

for parasites to guarantee the safety of food and feed sources. Amount of parasites is related to

cause the human and animal diseases therefore in the future quantitative studies of parasite

intensity in insect farms should be performed. In our opinion, the most reliable method of

quantitative research would be Real-Time PCR method. Insect welfare standards and analyti-

cal methods should also be developed to minimize production losses and effectively eliminate

pathogens from farms.
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