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ABSTRACT (248 words)

Background: Estimates of community spread and infection fatality rate (IFR) of COVID-19 have 

varied across studies. Efforts to synthesize the evidence reach seemingly discrepant conclusions. 

Methods: Systematic evaluations of seroprevalence studies that had no restrictions based on country 

and which estimated either total number of people infected and/or aggregate IFRs were identified. 

Information was extracted and compared on eligibility criteria, searches, amount of evidence 

included, corrections/adjustments of seroprevalence and death counts, quantitative syntheses and 

handling of heterogeneity, main estimates, and global representativeness. 

Results:  Six systematic evaluations were eligible. Each combined data from 10-338 studies (9-50 

countries), because of different eligibility criteria. Two evaluations had some overt flaws in data, 

violations of stated eligibility criteria, and biased eligibility criteria (e.g. excluding studies with few 

deaths) that consistently inflated IFR estimates. Perusal of quantitative synthesis methods also 

exhibited several challenges and biases. Global representativeness was low with 78-100% of the 

evidence coming from Europe or the Americas; the two most problematic evaluations considered only 

1 study from other continents. Allowing for these caveats, 4 evaluations largely agreed in their main 

final estimates for global spread of the pandemic and the other two evaluations would also agree after 

correcting overt flaws and biases.

Conclusions: All systematic evaluations of seroprevalence data converge that SARS-CoV-2 infection 

is widely spread globally. Acknowledging residual uncertainties, the available evidence suggests 

average global IFR of ~0.15% and ~1.5-2.0 billion infections by February 2021 with substantial 

differences in IFR and in infection spread across continents, countries, and locations.     
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Highlights

 Six systematic evaluations have evaluated seroprevalence studies without restrictions based on 

country and have estimated either total number of people infected and/or aggregate infection 

fatality rates for SARS-CoV-2. 

 These systematic evaluations have combined data from 10-338 studies (9-50 countries) each 

with partly overlapping evidence synthesis approaches.

 Some eligibility, design, and data synthesis choices are biased, while other differing choices 

are defendable. 

 Most of the evidence (78-100%) comes from Europe or the Americas.

 All systematic evaluations of seroprevalence data converge that SARS-CoV-2 infection has 

been very widely spread globally. 

 Global infection fatality rate is approximately 0.15% with 1.5-2.0 billion infections as of 

February 2021.     
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The extent of community spread of SARS-COV2 infection and the infection fatality rate (IFR) 

of COVID-19 are hotly debated. Many seroprevalence studies have provided relevant estimates. 

These estimates feed into projections that influence decision-making. Single studies create confusion, 

since they leave large uncertainty and unclear generalizability across countries, locations, settings and 

time points. Some overarching evaluations have systematically integrated data from multiple studies 

and countries.1-6 These synthetic efforts probe what are typical estimates of spread and IFR, how 

heterogeneous they are, and what factors explain heterogeneity. An overview of these systematic 

evaluations comparing their methods, biases, and inferences may help reconcile their findings on 

these important parameters of the COVID-19 pandemic.

METHODS

Eligible articles

Articles were eligible if they included a systematic review of studies aiming to assess SARS-

CoV-2 seroprevalence; there were no restrictions based on country; and an effort was made to 

estimate either a total number of people infected and/or aggregate IFRs. Articles were excluded if 

they considered exclusively studies of particular populations at different risk of infection than the 

general population (e.g. only healthcare workers), if they focused on specific countries (by eligibility 

criteria, not by data availability), and if they made no effort to estimate total numbers of people 

infected and/or aggregate IFRs. 

Search strategy

Searches were updated until January 14, 2021 in PubMed, medRxiv and bioRxiv with 

“seroprevalence [ti] OR fatality [ti] OR immunity [ti]” For feasibility, the search in PubMed was 

made more specific by adding “(systematic review OR meta-analysis OR analysis)”.. Communication 

with experts sought potentially additional eligible analyses (e.g. unindexed influential reports). 

Extracted information

From each eligible evaluation, the following information was extracted: 

1. Types of information included (seroprevalence, other)

2. Date of last search, search sources and types of publications included (peer-reviewed, 

preprints, reports/other) 

3. Types of seroprevalence designs/studies includedA
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4. Number of studies, countries, locations included

5. Seroprevalence calculations: adjustment/correction for test performance, covariates, type of 

antibodies measured, seroreversion (loss of antibodies over time)

6. Death count calculations: done or not; adjustments for over- or under-counting, time window 

for counting COVID-19 deaths in relationship to seroprevalence measurements

7. Quantitative synthesis: whether data were first synthesized from seroprevalence studies in the 

same location/country/other level; whether meta-analyses were performed across 

locations/countries and methods used; handling of heterogeneity, stratification and/or 

regression analyses, including subgroups

8. Reported estimates of infection spread, under-ascertainment ratios (total/documented 

infections) and/or IFR 

9. Global representativeness of the evidence: proportion of the evidence (weight, countries, 

studies or locations, depending on how data synthesis had been done) from Europe and North 

America (sensitivity analysis: Europe and America)  

Comparative assessment

Based on the above, the eligible evaluations were compared against each other with focus on 

features that may lead to bias and trying to decipher the direction of each bias.  

RESULTS

Eligible evaluations

Nine potentially eligible articles were retrieved1-3,5-10 And 4  were rejected (Figure 1)7-10  One 

more eligible report4 was identified from communication with experts. The 6 eligible evaluations are 

named after their first authors or team throughout the manuscript. 

Information used (Table 1)

Five evaluations included only seroprevalence studies. Meyerowitz-Katz also included non-

serological and modeling papers; summary IFR was smaller in the seroprevalence studies (0.60% 

versus 0.84% in others). The 6 evaluations differed modestly in dates of last search (range, 6/16/2020-

9/9/2020) and in sources searched. Given that few studies outside of Europe and Americas were 

released early, evaluations with earlier searches have a more prominent dearth of low-IFR studies 

from countries with younger populations and fewer nursing home residents. A
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Eligibility criteria varied and were sometimes unclear or left room for subjectivity. 

Consequently, eligible studies varied from 10 to 348 and countries covered with eligible data varied 

from 9 to 50. Two evaluations1,4 excluded studies in overtly biased ways, leading to inflated IFR 

estimates. 

Specifically, Meyerowitz-Katz excluded one study with low IFR5 alluding that the study itself 

“explicitly warned against using its data to obtain an IFR”;1 as co-investigator of the study, both 

myself and my colleagues are intrigued at this claim. They also excluded two more studies with low 

IFR alluding that it “was difficult to determine the numerator (i.e. number of deaths) associated with 

the seroprevalence estimate or the denominator (i.e. population) was not well defined”,1 while one 

even presented IFR estimates in its published paper.  Another excluded paper14 tabulated several 

seroprevalence studies with median IFR=0.31%, half the Meyerowitz-Katz estimate.

The Imperial College COVID-19 Response Team (ICCRT) excluded studies with <100 deaths 

at the serosurvey midpoint.4 This exclusion criterion introduces bias since number of deaths is the 

numerator in calculating IFR. Exclusion of studies with low numerator excludes studies likely to have 

low IFR. Indeed, 5 of 6 excluded studies with <100 deaths (Kenya, LA County, Rio Grande do Sul, 

Gangelt, Scotland)11,12,15-17 have lower IFR than the 10 ICCRT-included studies; the sixth 

(Luxembourg)18 is in the lower range of the 10 ICCRT-included studies.

 The 6 evaluations varied on types of populations considered eligible. Table 2 summarizes 

biases involved in each study population type. General population studies are probably less biased, 

provided they recruit their intended sample. Conversely, studies of healthcare workers,19 other high-

risk exposure workers and closed/confined communities may overestimate seroprevalence; these 

studies were generally excluded, either upfront (5/6 evaluations) or when calculating key estimates 

(Bobrovitz).  Other designs/populations may be biased in either direction, more frequently towards 

underestimating seroprevalence.20-27 Three evaluations (Meyerowitz-Katz, ICCRT, O’Driscoll) were 

very aggressive with exclusions. 

ICCRT had the most draconian exclusion criteria, excluding 165/175 identified seroprevalence 

studies. However, ICCRT actually dropped many general population studies (for various reasons), but 

included two blood donor studies28,29 (out of many such) and one New York study30 with convenience 

samples of volunteers recruited while entering grocery stores and through an in-store flyer. The latter A
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inclusion goes against the stated ICCRT eligibility criteria where self-selection is reason for 

exclusion. The New York study30 had high IFR (from the worst-hit state in the first wave). The 

preliminary press-released report from an Italian general population survey,31 was included in 

violation of ICCRT eligibility criteria4 that a study should have performed its own antibody test 

validation; ICCRT “salvaged” the Italian study by transporting validation data from another study in 

San Francisco. The Italian study report31 showed data on only 64,660 of the intended 150,000 

participants (missingness 57%). Its inferred IFR estimate (2.5%) is an extreme outlier (2-20-fold 

larger than other reported European estimates) and simply impossible: it matches/exceeds case fatality 

rates despite probably major under-ascertainment of infections in Italy.32 

Finally, the 6 evaluations differed markedly on how many included seroprevalence estimates 

came from peer-reviewed publications (journal articles listed in the references) at the time of the 

evaluation: from only 1 peer-reviewed estimate in Meyerowitz-Katz to 61 in Rostami. Some included 

seroprevalence estimates that came from preprints/reports published in peer-reviewed journals by 

2/2021; final publications could have minor/modest differences versus preprints/reports. Even 

journal-published estimates may get revised, e.g. a re-analysis increased Indiana seroprevalence 

estimates by a third.33      

Seroprevalence and death calculations (Table 3)  

Three evaluations3,4,6 routinely adjusted for test performance, one5 adjusted for test 

performance when the authors of the studies had done so, and two were unclear. Depending on test 

sensitivity/specificity, lack of adjustment may inflate or deflate seroprevalence. Ioannidis selected the 

most fully adjusted seroprevalence estimate, when both adjusted and unadjusted estimates existed; 

other evaluations were unclear on this issue. Ioannidis corrected the seroprevalence upward when not 

all three types of antibodies (IgG, IgM, IgA) were assessed. ICCRT and O’Driscoll considered 

seroreversion adjustments. 

Rostami and Bobrovitz did not collect death counts to estimate IFR. The other 4 evaluations 

did not systematically adjust death counts for under- or over-counting. Finally, ICCRT and O’Driscoll 

used distributional approaches on the time window for counting deaths (with means between 

seroconversion and death differing by 1.5 days and 10 days, respectively), Ioannidis counted deaths 
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until 7 days after the survey mid-point (or the date survey authors made a strong case for), and 

Meyerowitz-Katz counted deaths up until 10 days after survey end. 

Quantitative synthesis, heterogeneity, and main estimates (Table 4)

The 6 evaluations differed in quantitative synthesis approaches with implications for the main 

results. 

Meyerowitz-Katz used random effects meta-analysis of 26 IFRs calculating a summary 

estimate despite extreme between-study heterogeneity (I2=99.2%). Such extreme heterogeneity 

precludes obtaining meaningful summary estimates. Estimates from the same country/location were 

not combined first, and two multiply-counted countries (Italy and China) have high IFRs entered in 

calculations. Meta-analysis limited to seroprevalence studies yielded slightly lower summary IFR 

(0.60% versus 0.68%), but extreme between-study heterogeneity persisted (I2=99.5%), thus summary 

estimates remained meaningless. Extreme between-study heterogeneity persisted also within three 

risk-of-bias categories (I2=99.6%, 98.8%, and 94.8%, respectively), within Europe and within 

America. There was no between-study heterogeneity for 4 Asian estimates, but none came from 

seroprevalence data and their IFR estimate (0.46%) is far higher than many subsequent Asian studies 

(outside Wuhan) using seroprevalence data5 instead of modeling.   

Rostami also performed random effects meta-analyses but more appropriately combined at a 

first step seroprevalence data from studies in the same country, and in the same region; a summary 

estimate across all 107 estimates in all countries was also obtained. The step-wise approach avoids the 

Meyerowitz-Katz analysis flaw. However, seroprevalence estimates may still vary extremely even 

within the same location, e.g. if done at different times. Moreover, the main estimate of the evaluation 

(“263.5 million exposed/infected at the time of the study”) extrapolated to the global population the 

pooled estimate from all 107 datasets. The more appropriate estimate is a sum of the infected per 

country, or at least per region. Actually, the authors did calculate numbers of people exposed/infected 

per world region. The sum was 641 million, 2.5-fold larger. Moreover, these numbers did not reflect 

“the time of the study”: the 107 seroprevalence studies were done 2 to 6 months before the Rostami 

evaluation was written.

Bobrovitz calculated medians (overall and across several subgroups of studies) and Ioannidis 

calculated sample size-weighted means per location and then medians across locations. Their A
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approaches avoid multiple counting of locations with many estimates available. Bobrovitz also 

performed random effects inverse variance meta-analysis of prevalence ratios for diverse 

demographics (age, sex, race, close contact, healthcare workers). The approach is defendable, since 

prevalence ratios were calculated within each study, but still very large between-study heterogeneity 

existed (I2=85.1-99.4% per grouping factor) making results tenuous. Bobrovitz and Ioannidis reach 

congruent estimates for total number infected globally (643 million by November 17 and at least 500 

million by September 12, respectively) with under-ascertainment ratios of 11.9 in November and 17.2 

in September. Only the latter evaluation calculated IFRs (0.23% overall; 0.05% for those <70 years 

old). 

ICCRT and O’Driscoll focused on age-stratified estimates. ICCRT extrapolated age-stratified 

estimates to the age-structure of populations of typical countries, obtaining separate overall IFR 

estimates for low-income countries (0.22%), lower-middle-income countries (0.37%), upper-middle 

income countries (0.57%) and high-income countries (1.06%). O’Driscoll made extrapolations to 45 

countries estimating 5.27% of their population infected by September 1. 

Global representativeness (Table 5)

Seroprevalence data lacked global representativeness. 72-91% of the seroprevalence evidence 

came from Europe and North America (78-100% from Europe or Americas).  Lack of 

representativeness was most prominent in Meyerowitz-Katz (only one estimate from Asia, none from 

Africa), ICCRT (no estimates from Asia or Africa), and O’Driscoll (only one estimate from Africa, no 

estimate from Asia). However, ICCRT extrapolated to all countries globally and O’Driscoll 

extrapolated to 45 countries including 8 in Asia.  

DISCUSSION

This overview of 6 systematic evaluations of global spread and/or IFR of SARS-CoV-2 

utilizing seroprevalence data highlights differences in methods, calculations, and inferences. Several 

choices made by some evaluations led to bias. Other choices are defendable, and reveal some 

unavoidable variability on how evidence on these important questions should be handled. 

Choices that led to biased, inflated IFR estimates are the inclusion of modeling estimates, 

inappropriate exclusion of low-IFR studies despite fitting stated inclusion criteria of the evaluators, 

inappropriate inclusion of high-IFR studies despite not fitting stated inclusion criteria, and using low A
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death counts as exclusion criterion. Two evaluations (Meyerowitz-Katz and ICCRT) suffered multiple 

such problems each. These biases contributed to generate inflated and, sometimes, overtly implausible 

results. These two evaluations also cherry-picked very scant evidence (16 and 10 studies, including 

only 1 and 5 peer-reviewed articles, respectively), while hundreds of seroprevalence estimates are 

available (Appendix 1).  

Differences in types of study designs and populations considered eligible may be defended 

with various arguments by each evaluator. Studies of healthcare workers were consistently excluded. 

No consensus existed on studies of blood donors, clinical samples, workers at no obvious high-risk 

occupations, and various convenience samples; these designs have variable reliability. Reliability 

increases with careful adjustment for sampling, demographics, and other key factors and when 

missing data are limited. General population sampling is theoretically best, but general population 

studies may still suffer large bias from selective missingness. Unreachable individuals, 

institutionalized people and non-participating invitees are typically at higher infection risk; if so, some 

general population studies may substantially underestimate seroprevalence (overestimate IFR). E.g., 

Meyerowitz-Katz included a Danish government survey press release34 where only 1071 of 2600 

randomly selected invitees participated (missingness 59%); the estimated IFR (0.79%) is probably 

substantially inflated.6,29

Differences may also ensue from seroprevalence adjustments for test performance and other 

factors.35,36 Sometimes the change in estimated seroprevalence is substantial.37-39 Special caution is 

needed with low seroprevalence.40 When not all types of antibodies are assessed, a correction may 

also be useful. Adjustment for test performance may seemingly suffice. However, control samples 

used to estimate test sensitivity come from PCR-tested diagnosed patients, while missed diagnoses 

typically reflect asymptomatic or less symptomatic patients not seeking testing. Sensitivity may be 

much lower in these people, as many develop no or low-titer antibodies.41,42 Seroreversion has a 

similar impact. Preliminary evidence suggests substantial seroreversion.30,43-46 E.g., among healthcare 

personnel, 28.2% seroreverted in 2 months (64.9% in those with low titers originally).46 Only ICCRT 

and O’Driscoll considered corrections for seroreversion, but still did not allow for high seroreversion. 

All these factors would result in underestimating seroprevalence (overestimating IFR).   
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Both over- and under-counting of COVID-19 deaths (the IFR numerator) may exist,47,48 

varying across countries with different testing and death coding. Correction of COVID-19 death 

counts through excess deaths is problematic. Excess reflects both COVID-19 deaths and deaths from 

measures taken.47-50 Year-to-year variability is substantial, even more so within age-strata. 

Comparison against averages of multiple previous years are naïve, worse in countries with substantial 

demographic changes. E.g., in the first wave, an excess of 8071 deaths (SMR 1.03, 95%CI 1.03-1.04) 

in Germany became a deficit of 4926 deaths (SMR 0.98, 95%CI 0.98-0.99) after accounting for 

demographic changes.51      

The exact timepoint when deaths are counted may affect IFR calculations when surveys 

happen while many deaths are still accruing. All evaluations that counted deaths allowed for greater 

time for death to occur than for seroconversion, but Meyerowitz-Katz used a most extreme delay, 

considering deaths until 10 days after survey end. Surveys take from one day to over a month, thus 

inferred sampling-to-death delay may occasionally exceed 6 weeks. Meyerowitz-Katz defends this 

choice also in another paper10 choosing 4 weeks after the serosurvey mid-point. However, the 

argument (accounting for death reporting delays) is weak. Several situational reports plot deaths 

according to date-of-occurrence rather than date-of-reporting anyhow.52 Moreover, infection-to-death 

time varies substantially and may be shorter in developing countries where fewer people are long-

sustained by medical support.   

 Some quantitative synthesis approaches were problematic, e.g. calculating summary estimates 

despite I2>99%; or no data combination within the same country/location before synthesis across 

countries/locations. Another generic problem with meta-analysis of such data is that it penalizes better 

studies that allow more appropriately for uncertainty in estimates (e.g. by accounting for test 

performance and adjusting for important covariates). Studies with less rigorous or no adjustments may 

have narrower CIs (smaller variance, thus larger weight).5 Finally, for IFR meta-analysis, studies with 

few deaths may have higher variance (lower weight) and these studies may have the lowest IFR.   

Age-stratification for IFR estimation and synthesis is a reasonable choice to reduce between-

study heterogeneity driven by steep COVID-19 death risk age-gradient.53 However, both analyses4,6 

that capitalized on granular age-stratification made tenuous extrapolations to additional countries 

from thin or no data. ICCRT lacked seroprevalence data on low-income and lower middle-income A
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countries (~half the global population); upper middle-income countries (~35% of global population) 

were only represented by one estimate from Brazil assuming IFR=1%, exceeding 2-5-fold other peer-

reviewed estimates from Brazil.12,54 Estimates used from high-income countries included an 

impossible Italian estimate (IFR=2.5%)31 and mostly non-peer-reviewed data. O’Driscoll was more 

careful, but still some IFR extrapolations appear highly inflated versus data from subsequently 

accrued seroprevalence studies. Their ensemble model assumed highest IFR in Japan (1.09%) and 

lowest in Kenya (0.09%) and Pakistan (0.16%). Currently available seroprevalence studies from these 

countries show markedly lower IFR estimates: =<0.03%,55-57 =<0.01%,15 and 0.04-0.07%,58,59 

respectively. In Japan, infections apparently spread widely without causing detectable excess 

mortality.55 In Kenya, under-ascertainment compared with documented cases was ~1000-fold.15 

While some COVID-19 deaths are certainly missed in Africa, containment measures are more 

deadly.60   

All 6 evaluations greatly over-represented Europe and America. Only two (Rostami and 

Ioannidis) included meaningful amounts of data from Asia and Africa (still less than their global 

population share) in main estimate calculations. Currently, extensive data suggest high under-

ascertainment ratios in Africa and many Asian countries5,15,55-62 and thus much lower IFR in Asia 

(outside Wuhan) and Africa than elsewhere.

Quality of seroprevalence studies varies. Risk-of-bias assessments in prevalence studies are 

difficult. There are multiple risk-of-bias scales/checklists,63-66 but bias scores do not translate 

necessarily to higher or lower IFR estimates, while assessors often disagree in scoring (Appendix 2). 

Acknowledging these caveats, 4 of the 6 evaluations largely reach congruent estimates of 

global pandemic spread. O’Driscoll estimated 5.27% of the population of 45 countries had been 

infected by September 1, 2020, i.e. 180 million infected among 3.4 billion. Excluding China, the 

proportion of population infected among the remaining 44 countries would be ~9%, likely >10% after 

accounting for seroreversion. Countries not included among the 45 include some of the most populous 

ones with high infection rates (India, Mexico, Brazil, most African countries). Therefore, arguably at 

least 10% of the non-China global population (i.e. at least 630 million) would be infected as of 

September 1. This is very similar to the Ioannidis (at least 500 million infected as of September 12) 

and Rostami (641 million infected by summer, when numbers are added per region) estimates. The A
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Bobrovitz estimate (643 million infected as of November 17) should be increased substantially given 

that only 2 of 17 countries informing the calculated under-ascertainment ratio were in Asia or Africa, 

continents with much larger under-ascertainment ratios. National surveys in India actually estimated 

60% seroprevalence in November in urban areas.67 Therefore, probably infected people globally were 

~1 billion (if not more) by November 17 (compared with 54 million documented cases). By 

extrapolation, one may cautiously estimate ~1.5-2.0 billion infections as of February 21, 2021 

(compared with 112 million documented cases). This corresponds to global IFR ~0.15% - a figure 

open to adjustment for any over- and under-counting of COVID-19 deaths (Appendix 3).      

Meyerowitz-Katz and ICCRT reach higher estimates of IFR, but, as discussed above, these are 

largely due to endorsing selection criteria focusing on high-IFR countries, violations of chosen 

selection criteria and obvious flaws that consistently cause IFR overestimation. Similar concerns 

apply to another publication with implausibly high age-stratified IFRs by Mayerowitz-Katz limited to 

countries with advanced economies, again cherry-picking some of the highest IFR locations and 

estimates.11 

Even correcting inappropriate exclusions/inclusion of studies, errors, and seroreversion, IFR 

still varies substantially across continents and countries. Overall average IFR may be ~0.3-0.4% in 

Europe and the Americas (~0.2% among community-dwelling non-institutionalized people), and 

~0.05% in Africa15 and Asia (excluding Wuhan). Within Europe, IFR estimates were probably 

substantially higher in the first wave in countries like Spain,68 UK,69 and Belgium70 and lower in 

countries like Cyprus or Faroe Islands (~0.15%, even case fatality rate is very low),71 Finland 

(~0.15%)72 and Iceland (~0.3%).73 One European country (Andorra) tested for antibodies 91% of its 

population.74 Results74 suggest an IFR less than half of what sampling surveys with greater 

missingness have inferred in neighboring Spain. Moreover, high seroreversion was noted, even a few 

weeks apart,74 thus IFR may be even lower. Differences exist also within a country, e.g. within the 

USA, IFR differs markedly in disadvantaged New Orleans districts versus affluent Silicon Valley 

areas. Differences are driven by population age-structure, nursing home populations, effective 

sheltering of  vulnerable people,75 medical care, use of effective (e.g. dexamethasone)76 or detrimental 

(e.g. hydroxychloroquine)77 treatments, host genetics,78 viral genetics and other factors.   
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IFR may change over time locally79 and globally. If new vaccines and treatments 

pragmatically prevent deaths among the most vulnerable, theoretically global IFR may decrease even 

below 0.1%. However, there are still uncertainties both about the real-world effectiveness of new 

options, the pandemic course and  post-pandemic SARS-CoV-2  outbreaks or seasonal re-occurrence. 

IFR will depend on settings and populations involved. E.g. even “common cold” coronaviruses have 

IFR~10% in nursing home outbreaks.80 

Admittedly, primary studies, their overviews and the current overview of overviews have 

limitations. All estimates have uncertainty. Interpretation unavoidably has subjective elements. This 

challenge is well-known in the literature of discrepant systematic reviews.81-85 Cross-linking diverse 

types of evidence generates even more diverse eligibility/design/analytical options. Nevertheless, one 

should separate clear errors and directional biases from defendable eligibility/design/analytical 

diversity. 

Allowing for such residual uncertainties, reassuringly the picture from the 6 evaluations 

assessed here is relatively congruent: SARS-CoV2 is widely spread, has lower average IFR than 

originally feared, and substantial global and local heterogeneity.  Using more accurate estimates of 

IFR may yield more appropriate planning, predictions, and evaluation of measures.  
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Figure 1. Flow diagram

         
1084 items retrieved by searches (249 
from PubMed, 359 from medRxiv, 476 
from bioRxiv)

1075 items excluded after 
screening titles and abstracts

9 potentially eligible articles

Four articles excluded upon full-
text scrutiny (three [refs. 7-9] 
had not obtained any total 
estimates of infected people or 
IFR and one [ref. 10] had 
focused only on countries with 
advanced economies.

5 eligible articles

One additional report 
obtained from communication 
with experts

6 total eligible evaluations
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Table 1. Key features for eligible systematic data syntheses

Features Meyerowitz-

Katz

Rostami Bobrovitz Imperial College 

COVID-19 response 

team

Ioannidis O’Driscoll

Types of information 

included

SP, non-

serological and 

modeling studies

SP studies SP studies SP studies SP studies SP studies

Last search June 16 August 14 August 28 Unclear September 9 Unclear (September 

1?)

Search sources PubMed, 

preprints 

(medRxiv, 

SSRN), Google, 

Twitter searches, 

government 

agency reports 

eligible

PubMed, Scopus, 

Embase, medRxiv, 

bioRxiv, research 

reports eligible

Medline, 

EMBASE, Web 

of Science, and 

Europe PMC, 

Google, 

communication 

with experts

Serotracker searches 

(see Bobrovitz)

PubMed (LitCOVID), 

medRxiv, bioRxiv, 

Research Square, 

national reports, 

communication with 

experts for additional 

studies

Unclear

Types of SP studies 

included

Excluded 

targeted 

populations with 

selection bias, 

also 4 other 

Excluded at-risk 

populations (e.g. 

HCW), known 

diseases (e.g. 

dialysis, cancer)

All studies 

included if they 

reported on 

sample, date, 

region, and SP 

Studies with defined 

sampling framework, 

defined geographic 

area, with availability  

of test performance, 

General population or 

approximations 

(including blood donors, 

excluding high-risk, e.g. 

HCW, communities), 

Unclear, but 

eventually it includes 

some general 

population studies, 

some blood donors, 
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studies* estimate preferentially 

validation done as part 

of the study (not just 

by manufacturers), 

>100 deaths at SP 

study mid-point**; 

excluded healthcare 

workers, symptoms of 

COVID-19, self-

referral or self-

selection, narrow age 

range, confined 

settings, clinical 

samples

sample size >500, area 

with population >5000

and some hospital 

samples 

Number of studies, 

countries, locations

24-27 

studies***, of 

which 16 

serological from 

14 countries

107 datasets from 

47 studies from 23 

countries

338 studies (184 

from general 

population) from 

50 countries (36 

from general 

population)****

10 studies (6 national, 

4 subnational), 9 

countries*****

82 estimates, 69 studies, 

51 locations, 36 

countries (main analysis 

at the location level)

25 studies from 20 

countries (only 22 

national representing 

16 countries used in 

the ensemble model)

Studies published in 

peer-review journals 

1/16 61/107 4/40 included in 

final analysis of 

5/10 35/82 6/20 countries
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at the time of the 

evaluation

under-

ascertainment 

ratio

SP: seroprevalence, HCW: healthcare workers, IFR: infection fatality rate

*One study (LA County)11 with very low IFR was excluded with the justification that it “explicitly warned against using its data to obtain an 

IFR”; as a co-investigator of the study both myself and my colleagues are intrigued at the rationale for exclusion; in the publication of the study 

in JAMA11 we did list limitations and caveats, as it is appropriate for any seroprevalence study to do; excluding studies that are honest to 

discuss limitations would keep only the worst studies that discuss no limitations. Two other studies with low IFR were excluded as well. One 

was done in Rio Grande do Sul12 where its authors even report IFR estimates in their paper (0.29%, 0.23%, 0.38% in the three rounds of the 

serosurvey); the other was done in Boise,13 where its authors properly discuss limitations but an approximation of IFR is possible; even if not 

perfectly accurate it is certainly lower than the IFR estimates included in the Meyerowitz-Katz meta-analysis. For the fourth excluded study,14 

the justification offered for its exclusion is that it “calculated an IFR, but did not allow for an estimate of confidence bounds”.1 However, this 

study presents results of a New York study that Meyerowitz-Katz did include in their meta-analysis. Of note, that fourth study14 also presents a 

cursory review of seroprevalence studies arriving at a median IFR=0.31%, half of the summary estimate of Meyerowitz-Katz.    

**clear bias introduced since number of deaths is the numerator itself in the calculation of IFR, and exclusion of studies with low numerator is 

thus excluding studies likely to have low IFR 

***different numbers provided by the authors for total studies in abstract (n=24), text of the paper (n=25), tabulated studies (n=27) and forest 

plot studies (n=26)

****39 estimates from 17 countries used in main calculation of median under-ascertainment ratio (N. Bobrovitz, personal communication)

*****one of the 10 included studies violates the eligibility criterion of the investigators having validated themselves the antibody test used; the 

ICCRT included this study invoking validation data for the same antibody kit done by a different team in a study in a completely different 

setting and continent (San Francisco); based on this rationale perhaps many other studies could have been included, if the same violation of the 

eligibility criteria were tolerated. The included study was an Italian survey31 which had only been released in the press with a preliminary report 
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at the time of the ICCRT evaluation, and which included crude results on only 64,660 of the intended 150,000 participants (missingness 57%). 

Its inferred IFR estimate (2.5%) is an extreme outlier, as it is 2-20-fold larger than other typical estimates reported from numerous European 

countries. Moreover, that IFR estimate even matches/exceeds case fatality rates and thus it is simply impossible. It is widely accepted that IFR 

must be several times smaller than case fatality rate, even in locations with substantial testing. Italy had very limited testing in the first wave and 

modest testing in the second wave. One estimate suggests that the number of infections in Italy at the peak of the first wave was 12 times more 

than the number of documented cases, i.e. the IFR would be more than an order of magnitude lower than the case fatality rate.32  
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Table 2. Direction of potential bias in studies with different types of populations

Type of sampling Direction of bias

General population (entire population or 

design for representative sample)

Depends on characteristics of individuals who cannot be reached and/or decline participation. 

If they are more likely to be more disadvantaged (e.g. have no address/phone/e-mail) and 

thus also at higher risk of infection, SP may be underestimated. Potential for bias is more 

prominent when non-response/non-participation is larger. Institutionalized populations and 

homeless people are typically not included, and these populations often have very high 

infection rates;20,21 thus SP is underestimated.     

Convenience sample (including self-

referral and response to adverts)

Bias could be in either direction. Volunteer bias is common and would tend to recruit more 

health conscious, low-risk individuals,22 leading to SP underestimation. Conversely, interest 

to get tested because of worrying in the presence of symptoms may lead to SP 

overestimation. 

Blood donors Bias could be in either direction, but SP underestimation is more likely, since blood donors 

tend to be more health conscious and thus more likely to avoid also risky exposures. An early 

classic assessment23 described blood donors as “low risk takers, very concerned with health, 

better educated, religious, and quite conservative” - characteristics that would lead to lower 

infection risk. In countries with large shares of minorities (e.g. USA and UK), minorities are 

markedly under-represented among blood donors.24,25 E.g, in the USA, donation rates are 37-

40% lower in blacks and Hispanics versus whites24 and in the UK, donation rates range from 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

1.59 per 1000 among Asian Bangladeshi origin, compared to 22.1 per 1000 among white 

British origin.25 These minorities were hit the most by COVID-19. In European countries, 

donations are lower in low-income and low-education individuals;26,27 these are also risk 

factors for COVID-19 infection. Bobrovitz3 found median seroprevalence of 3.2% in blood 

donor studies versus 4.1% in general community/household samples (risk ratio 0.80 in meta-

regression). SP may be overestimated if blood donation is coupled to a free COVID-19 test in 

a poor population (as in the case of a study in Manaus, Brazil).

Clinical residual samples and patients 

(e.g. dialysis, cancer, other)

Bias could be in either direction, but SP underestimation is more likely since patients with 

known health problems may be more likely to protect themselves in a setting of a pandemic 

that poses them at high risk. Conversely, repeated exposure to medical facilities may increase 

risk. Demographic features and socioeconomic status may also affect the size and direction 

of bias. Bobrovitz3 found median seroprevalence of 2.9% in studies of residual samples 

versus 4.1% in general community/household samples (risk ratio 0.63 in meta-regression). 

Hospital visitors’ studies had even lower seroprevalence (median 1.4%).  

Healthcare workers, emergency response, 

other workers with obvious high risk of 

exposure

Bias very likely to lead to SP overestimation compared with the general population, because 

of work-related contagion hazard; however, this may not always be the case (e.g. most 

infections may not happen at work) and any increased risk due to work exposure sometimes 

may be counterbalanced by favorable socioeconomic profile for some healthcare workers 

(e.g. wealthy physicians). Bias may have been more prominent is early days of the pandemic, 

especially in places lacking protective gear. Across 8 studies with data on healthcare workers 
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and other participants, seroprevalence was 1.74-fold in the former.3  

Other workers Bias could be in either direction and depends on work experience during the pandemic period 

and socioeconomic background, e.g. SP may be underestimated compared with the general 

population for workers who are wealthy and work from home during the pandemic and 

overestimated for essential workers.

Communities (shelters, religious, other 

shared-living)

Likely very strong bias due to high exposure risk leading to SP overestimation compared 

with the general population. Some of these communities were saturated with very high levels 

of infection very early.20,21 

SP: seroprevalence

Table 3. Adjustments and corrections for seroprevalence and death counts

Features Meyerowitz-

Katz

Rostami Bobrovitz Imperial College 

COVID-19 response 

team

Ioannidis O’Driscoll

Adjustment of SP for 

test performance

Unclear 

selection rule

Unclear selection 

rule

Yes (Bayesian) Yes Yes, when done by 

authors of SP study

Yes (24/25 studies)

Adjustment of SP for 

confounders

Unclear 

selection rule

Unclear selection 

rule

Unclear selection 

rule

Unclear selection rule Selecting most fully 

adjusted SP estimated

Unclear selection rule

Other SP correction No No No Seroreversion Type of antibodies* Seroreversion, in 

secondary analysis

Death count 

adjustments

No adjustments Deaths not assessed Deaths not 

assessed

No adjustments No adjustments No adjustments
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Time window for 

death counts

10 d after 

completion of SP 

study

Deaths not assessed Deaths not 

assessed

Distributional (truncated 

gaussian and beta), mean 

18.3 d from onset to 

seroconversion, 19.8 d 

from onset to death

7 d after mid-point of SP 

survey or as chosen by 

its authors

Distributional 

(gamma), mean 10 d 

from onset to 

seroconversion, 20 d 

from onset to death

SP: seroprevalence, IFR: infection fatality rate, d: days *one-tenth adjustment per each not tested antibody (IgG, IgM, IgA)

Table 4. Quantitative synthesis approaches, stratification and/or regression, and main estimates

Meyerowitz-

Katz

Rostami Bobrovitz Imperial College 

COVID-19 

response team

Ioannidis O’Driscoll

Quantitative 

synthesis

26 IFR estimates 

combined at one-

step with D-L 

RE model, 

I2=99.4%

First step 107  SP 

estimates combined 

separately for each 

country with D-L 

RE model, then per 

region. Also D-L 

RE for all 107 

estimates, 

I2=99.7%

Median SP calculated 

overall and per 

subgroup of interest. 

Log-linear model 

for pooling age-

stratified IFR, 

then age-stratified 

estimates 

extrapolated to 

the age-structure 

of populations of 

typical countries 

First step, sample-size 

weighted summary of SP 

per location; then 

median estimated across 

locations 

The ensemble model 

eventually models 

age-stratified IFR in a 

total of 45 countries 

with available age-

stratified death 

counts, but data are 

used as input from 

only 16 countries that 

have IFR data with 

some age 

stratification
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Stratification and/or 

regression

Subgroup 

analyses per 

continent, month 

of publication, 

modeling versus 

serological, and 

risk of bias

Subgroup analyses 

per age, gender, 

type of population, 

serological method, 

race/ethnicity, 

income, human 

development index, 

latitude/longitude, 

humidity, 

temperature, days 

from onset of 

pandemic; also RE 

meta-regressions

Subgroup analyses per 

GBD region, scope 

(national, regional, 

local, sublocal), risk of 

bias, days since 100th 

case (also explored in 

meta-regressions); RE 

inverse variance meta-

analysis of prevalence 

ratios for demographics 

(age, sex, race, close 

contact, HCW status) 

with I2=85.1-99.4% per 

grouping factor

Focus on age-

strata, also IFR 

estimates with 

and without 

seroreversion, and 

(for some 

countries) 

excluding nursing 

home deaths

Separate analyses for age 

<70 years; also subgroup 

analyses according to 

level of overall mortality 

in the location

Focus on age-strata; 

also per sex/gender 

and per country

Main estimates Summary IFR 

0.68 (95% CI-

0.53-0.82%), 

0.60 when 

limited to 

serological 

studies

263.5 million 

exposed/infected at 

the time of the 

study based on the 

pooled SP from all 

107 datasets; when 

estimated per 

region the total is 

643 million infected as 

of November 17, based 

on estimated median 

under-ascertainment 

factor of 11.9 (using 9 

days before study end 

date for PCR counts)**

Overall IFR: LIC 

0.22 (0.14, 0.39), 

LMIC) 0.37 

(0.25, 0.61), 

UMIC 0.57 (0.38, 

0.92), HIC 1.06 

(0.73, 1.64)

Over 500 million 

infected as of September 

12 (vs. 29 million 

documented cases) 

globally; median IFR 

0.23% in the available 

studies (0.09% in 

locations with < 118 

5.27% of the 

population of the 45 

modeled countries 

had been infected by 

September 1. 
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641 million* deaths/million), 0.20% 

in locations with 118–

500 deaths/million, 

0.57% in locations with 

> 500 deaths/million

SP: seroprevalence, IFR: infection fatality rate, RE: random effects

*in millions: Europe+North America 47, East+Southeast Asia 47, Latin America 9, South America 6, Sub Saharan Africa 62, Central and South Africa 

446, North Africa and West Asia 24

** median under-ascertainment was 14.5 overall based on 125 study estimates and 11.9 in national estimates, 15.7 in regional estimates, and 24.0 in 

local estimates  
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Table 5. Global representativeness 

Meyerowitz-Katz Rostami Bobrovitz Imperial College 

COVID-19 

response team

Ioannidis O’Driscoll**

Estimates (countries)*

Europe

North America

Latin America

Asia

Africa

Oceania

11 (11) 

3 (1)

1 (1)

1 (1)

0  (0)

0 (0)

52 (13)

22 (1)

17 (2)

14 (5)

2 (2)

0 (0)

33 (13)

1 (1)

3 (1)

2 (1)

1 (1)

0 (0)

8 (7)

1 (1)

1 (1)

0 (0)

0 (0)

0 (0)

22 (21)

15 (2)

3 (3)

10 (9)

1 (1)

0 (0)

13 (13)

1 (1)

1 (1)

0 (0)

1 (1) 

0 (0)

Information from Europe 

and North America

91% of weight 72% of datasets 85% of datasets 

(82% of countries)

90% of datasets 73% of location 

estimates

87% of countries

Information from Europe 

and America

98% of weight 85% of datasets 93% of datasets 

(87% of countries)

100% of datasets 78% of location 

estimates

94% of countries

*geographic location of estimates (countries) included in main calculations ** The extrapolated 45 countries on which age-stratified IFR estimates are 

obtained also include countries outside the regions that have at least one country represented (Pakistan, Philippines, Bangladesh, Indonesia, China, 

Thailand, South Korea, Japan) even though not directly measured in any of them
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Appendix 1. Evaluations with multiple flaws and with choices consistently inflating IFR: 

technical competence or bias issues 

The evaluations by ICCRT4 and Meyerowitz-Katz1 have multiple flaws as well as eligibility, 

design, and analytical choices that consistently lead to higher IFR estimates. This raises questions of 

technical competence and/or bias.  

In multiple main media interviews and quotes Meyerowitz-Katz is presented professionally as 

an “epidemiologist”, but apparently he has not received yet a PhD degree as of this writing and he is 

still a student at the University of Woolongong in Australia. Neither he nor his co-author of the 

evaluation (apparently another PhD student) had published any peer-reviewed systematic review or 

meta-analysis on any topic prior to the pandemic. By the end of 2019, Meyerowitz-Katz had 

published 2 PubMed-indexed papers (both on diabetes) that had received 2 citations and 1 self-

citation in Scopus. Meyerowitz-Katz is very active also in Twitter through an account called Health 

Nerd (56,800 tweets as of January 19, 2021). The Twitter account has interesting, smart content with 

strong advocacy, often supporting worthy causes. The same account has also been generating 

tweetorial content reviewing various COVID-19 papers, including many critical/highly negative 

comments on my papers, e.g. on the IFR evaluation.5 For fairness, readers may consult these Twitter 

criticisms of Meyerowitz-Katz and of another prolific Twitter critic with highly similar views as 

Meyerowitz-Katz (Atomsk’s Sanakan [64,200 tweets as of January 19, 2021], self-described as 

“Christian; Science, Denialism Debunked, Philosophy, Manga, Death Metal, Pokémon, Immunology 

FTW; Fan of Bradford Hill + Richard Joyce”, also supporting several worthy causes, e.g. debunking 

denialism). The tweetorials have been posted in Pubpeer 

(https://pubpeer.com/publications/C2A5DD4ED8B5A0B13F63A47FEC143A). Comparison against 

the present manuscript may hopefully help knowledgeable readers generate an informed opinion as to 

the merits of arguments raised. I don’t have a personal Twitter account, but was alerted to the 

negative tweetorials by Meyerowitz-Katz several months ago. At that time, the name of the Twitter 

account owner was not obviously visible (the photo showed an unrecognizable figure with big glasses 

and a cat), but Meyerowitz-Katz seemed to use the Twitter account prolifically to promote his own 

work and criticize work contradicting his work. The identity of the Health Nerd Twitter account has 

become transparent now, since the owner has added a photo of him (wearing a T-shirt that writes A
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“Trust me, I am an epidemiologist”). The identity of the reverberating Atomsk’s Sanakan Twitter 

account is still unclear (to me at least) and its relationship to Meyerowitz-Katz, if any, is unknown.

Overall, one potential explanation is that the flaws of the Meyerowitz-Katz evaluation may 

simply reflect lack of experience and technical expertise of otherwise well-intentioned and smart 

authors with a heightened sense of advocacy during a serious pandemic that represents undoubtedly a 

major crisis. It is well-known that most published systematic reviews and meta-analyses in the 

literature have substantial flaws anyhow. For students performing their first evidence synthesis ever, 

choosing a topic that requires advanced expertise due to unusual cross-design features, difficult 

methodological challenges and convoluted and often erratic data, a highly-flawed final product should 

not be surprising. Perusal of the voluminous Twitter comments of Health Nerd similarly demonstrates 

immediately the wonderful enthusiasm, but also lack of adequate expertise required to conduct such 

analyses in any rigorous way. Nevertheless, it is worrisome that trustworthy media like Scientific 

American and The Guardian have espoused Meyerowitz-Katz’s views and serious organizations may 

guide their planning based on a flawed paper. Meyerowitz-Katz is a columnist also at the American 

Council on Science and Health (https://www.acsh.org/profile/gideon-meyerowitz-katz), a pro-industry 

advocacy group.  He reports no conflicts of interest.

The ICCRT evaluation presents a very different case. Even though the first author had also 

published no peer-reviewed systematic reviews and meta-analyses prior to the pandemic, he has a 

stronger overall publication record, and there are also 21 other scientists co-authoring that evaluation. 

The author list includes senior names with unquestionable competence, especially in modeling. The 

ICCRT evaluation is also extremely sophisticated methodologically in many of its analytical 

processes. Its fatal flaws pertain to issues of more fundamental clinical epidemiology issues (e.g. 

excluding studies with few deaths, extreme selection bias in the choice of eligible studies, 

inappropriate extrapolations/generalizations). Sophisticated modeling can do absolutely nothing to 

salvage an evaluation once it fails at such fundamental principles. 

Perhaps the ICCRT simply paid little or no attention to these issues given its traditional 

strength and focus on modeling. It is worrisome, however, that the ICCRT work has been extremely 

influential in shaping the dominant narrative and major decisions about measures taken to deal with 

the pandemic in the UK, USA, and many other countries. The early models of the ICCRT that A
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assumed an IFR of 0.9% and that predicted a death toll of 2.2 million in the USA and 500 thousand in 

the UK were key scientific drivers supporting the choice of aggressive lockdowns. The ICCRT 

publication in Nature (Flaxman et al., https://www.nature.com/articles/s41586-020-2405-7) that 

claimed that “across 11 countries 3.1 (2.8–3.5) million deaths have been averted owing to 

interventions since the beginning of the epidemic” and that “only the effect of lockdown is 

identifiable, and that it has a substantial effect (81% (75–87%) reduction in Rt)” was a key driver for 

the re-introduction of lockdown strategies in many countries in the fall of 2020.  That publication has 

been repeatedly challenged (see for example https://www.nature.com/articles/s41586-020-3025-y, 

https://www.medrxiv.org/content/10.1101/2020.07.22.20160341v3) because the results are highly 

dependent on the model used and assumptions made. In that Nature paper, ICCRT published the 

results of a model that showed that lockdown worked, while ICCRT itself had developed by that time 

also another model with much better fit to the data and which showed that lockdown did not work (for 

detailed discussion see: https://www.medrxiv.org/content/10.1101/2020.07.22.20160341v3). 

Moreover, they reported on data on 11 European countries, while they failed to report on additional 

European countries for which data were available and which showed little or no benefit from 

lockdown with either analytical model. This behavior represents a mixture of major selection bias and 

confirmation bias, of the same character as the biases in mis-shaping and in violating eligibility 

criteria in the IFR report of the ICCRT. 

Overall, ICCRT seems to consistently violate basic evidentiary practices in order to defend at 

all cost its original narrative of very high IFR and need for draconian lockdown measures. ICCRT 

does not seem to have any obvious conflict with for-profit entities and it is funded by prestigious 

public research agencies and not-for-profit philanthropists. Given the pervasive problems that 

permeate its work, the influence it exerts, and the unquestionable excellence of the scientific team, 

ICCRT and its oversight academic/research organizations and/or funders should audit the processes 

with which research is conducted and disseminated within ICCRT in order to identify how such 

biases can be contained or mitigated. 
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Appendix 2. Risk of bias assessment in COVID-19 seroprevalence studies

Meyerowitz-Katz used the scoring tool developed by Hoy et al.66 that has 10 items, and 

Rostami as well as Bobrovitz used the Joanna Briggs scoring tool, but Rostami used an earlier version 

that has 10 items,65 while Bobrowitz used a later version that has 9 items.64 “High risk of bias” studies 

need to be seen with more caution, but the “low risk of bias” and “high risk of bias” tags depend on 

the scale used and also they depend on the rater. Importantly, understanding the study design and 

conduct without a full publication is difficult or impossible. Often it is difficult or impossible to do 

this even with a full publication available, since reporting is insufficiently complete plus there may be 

differences between what is reported and what was actually done. Scales of observational studies are 

thus among the weakest frontiers of evidence-based medicine, despite continued interesting efforts. 

Meyerowitz-Katz scored all 10 checklist items on all the included studies, even though almost 

all of the studies included in their evaluation were just press releases or preliminary reports or 

preprints. Scoring on such limited information in particular the Hoy et al. tool seems excessively 

confident and problematic. The Joanna Briggs checklists may be easier to score, but they are also 

ambiguous in the absence of detailed information about a study. 

 Furthermore, even when there was a relatively full description of a seroprevalence study, 

assessments by different raters reached different conclusions. For example, Bobrovitz classified 

overall only 12 studies out of 338 as low risk of bias, acknowledging in many cases that the 

information was unclear regarding some items of the scoring checklist. Conversely, Rostami 

classified 44 out of 107 studies as low risk of bias and Meyerowitz-Katz classified 6 out of 16 studies 

as low risk of bias. Moreover, Meyerowitz-Katz made a claim that the IFR was higher in the 6 studies 

with low risk of bias. However, 3 of these studies were not classified as low risk of bias by Bobrovitz. 

To illustrate the confusion that can arise from divergent scoring between raters, let us consider 

here one study, the Santa Clara study.37 Bobrovitz scored the study as “yes” on 5 items, as “unclear” 

in 1 item, and as “no” in 3 items of the Joanna Briggs checklist. Conversely, according to Rostami the 

study scored “yes” on 9 out of 10 items of the earlier Joanna Briggs checklist and was classified as 

overall “low risk of bias”. According to Meyerowitz-Katz, the study scored “yes” on only 5 of 10 

items of the Hoy et al. checklist and was thus classified as “high risk of bias”. 
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According to Bobrovitz the study scored “no” on the following items: item 1 (appropriate 

sample frame), item 5 (good coverage of sample), and item 6 (valid methods used for the 

identification of the condition). Conversely, according to Rostami, the study scored “yes” on all these 

three items, but it scored “no” on an item that has been dropped from the updated Joanna Briggs tool: 

“Are all important confounding factors/subgroups/differences identified and accounted for?” 

Obviously, this question is extremely difficult to answer with confidence for any study 

(seroprevalence or other) and the default answer should be “no”. The essential question is to what 

extent residual factors affect the validity of the results, not whether all of them have been identified 

and accounted for, which would be a mission impossible. Also of note, Bobrovitz operationalized 

item 6 as “sensitivity >90% and specificity >95%”. This operationalization allows some 

standardization, but is rather arbitrary, and violates the original checklist item.   

Overall, quality and risk of bias scoring of prevalence studies is a very difficult task and 

despite valiant efforts by the evaluators, it is precarious to draw any strong conclusions.  
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Appendix 3. Optimizing the calculation of a global infection fatality rate and spread of the 

infection

Current estimates of infection spread and of infection fatality rate try to extrapolate from data 

available on a limited set of countries, with heavy representation of data from European and American 

countries. Extrapolations to countries that do not have direct measures of seroprevalence need to 

correct for differences in age structure of the population, and proportion of nursing home residents 

among the overall population and among COVID-19 fatalities. Other factors that need to be 

considered are the impact of seroreversion (later conducted seroprevalence surveys may 

underestimate total prior infections), re-infections, and changes over time in the testing intensity and 

in the use of effective or detrimental treatments and management options.  

The validity of the data and inferences depend on the capacity/availability of a 

country/continent in testing, data acquisition and reporting. For example, most African countries have 

far more limited capacity. However, this does not mean that unbiased studies need to be available for 

all 200+ countries around the world. E.g. data from 5-10 countries in Africa would offer substantially 

solid evidence that should be possible to extrapolate to the other African countries. Data need to be 

collected also from a selection of approximately 10 countries from each of the main economic strata 

other than high-income countries (low-income countries, lower-middle-income countries, upper-

middle income countries). For countries with limited resources, some centralized planning and 

execution of such studies, e.g. under the auspices of the World Health Organization, may be needed. 

All age subgroups need to be properly represented in such evaluations and efforts should be made to 

avoid under-participation of some population strata that are at higher risk of infection (see Table 2 

regarding deficiencies in general population strata). Definition of COVID-19 deaths is a particularly 

contentious issue and efforts at standardization would be useful. Granular detailed information on risk 

profile of COVID-19 fatalities not only in terms of comorbidities, but also regarding their severity and 

the overall prior functional capacity and life expectancy of the deceased would help map more 

appropriately the death burden and person-years lost. Crude estimates of infection fatality rate may be 

over-emphasizing burden of disease, if COVID-19 deaths occur in people with minimal life 

expectancy. E.g. the infection fatality rate for an 80-year old person may be vastly (10-100-fold) 
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different in a community dwelling 80-year old versus an 80-year old nursing home resident in 

palliative hospice care. 
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