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The implementation of the commitment scheme in the SwissPost-Scytl
mixnet uses a trapdoor commitment scheme, which allows an authority who
knows the trapdoor values to generate a shuffle proof transcript that passes
verification but actually alters votes. We give two examples of details of how
this could be used. The first example allows the first mix to use the trapdoors
to substitute votes for which it knows the randomness used to generate the
encrypted vote. The second example does not even require knowledge of the
random factors used to generate the votes, and could be used by the last mix
in the sequence.

1. Introduction

1.1. Universal and Complete Verifiability

Verifiability is a critical part of the trustworthiness of e-voting systems. Universal verifi-
ability means that a proof of proper election conduct should be verifiable by any member
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of the public. The authorities who conduct the election produce a mathematical proof
transcript as evidence that they have conducted the election properly, then any member
of the public can download and inspect the verification software (or write their own) to
check that the election outcome is correct.

The Swiss sVote voting system claims to offer a form of verifiability, called “complete
verifiability”, which aims at offering the same guarantees as universal verifiability under
the extra assumption that at least one of the components on the server-side, i.e., the
people running the voting system, behaves honestly [Scy18]. (Universal verifiability
offers guarantees even if all server-side components are malicious.)

In order to achieve complete verifiability, the sVote system produces audit data. One
component of those audit data, which is used to demonstrate that the votes that are
received are actually counted, is a sequence of proofs of shuffle—each mix server is
supposed to prove that the set of input votes it received correspond exactly to the
differently-encrypted votes it output.

These proofs can be complicated because they need to protect voter privacy. How-
ever, their trust assumptions are simple: it should not be possible for any collusion of
authorities, whether those who hold the decryption keys, those who write the software,
or those who mix the votes, to provide a proof transcript that passes verification but
alters votes.

1.2. Summary of our Contribution

We show that the SwissPost-Scytl mixnet specification and code recently made available
for analysis does not meet the assumptions of a sound shuffle proof and hence does not
provide universal or complete verifiability.

The problem derives from the use of a trapdoor commitment scheme in the shuffle
proof—if a malicious authority knows the trapdoors for the cryptographic commitments,
it can provide an apparently-valid proof, which passes verification, while actually having
manipulated votes. There is no modification of the audit process that would make it
possible to detect if a manipulation happened. Instead, the key generation process for
the commitment scheme should be modified in such a way that it offers evidence that
no trapdoor has been produced, and the audit process should include the verification of
this new evidence.

We give two examples of how knowledge of the commitment trapdoors could be used
to provide a perfectly-verifying transcript while actually manipulating votes.

The first example allows the first mix to use the trapdoors to substitute votes for
which it knows the randomness used to generate the encrypted vote. While this requires
some violation of privacy, it is consistent with the requirements of the system, which
state that an attacker shall not be able to change a vote even if voting clients are
compromised [Scy18], and such a compromise could violate privacy. (We believe that
the assumption that voting clients may be compromised is sound too: the voting system
cannot do anything to guarantee that the computer of the voter does not contain any
malware.)
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The second example allows the last mix to use the same trapdoors to modify votes and
does not require any violation of privacy, but has some constraints on the candidates for
which votes could be added or removed. If, for some reason, these constraints are not
satisfied, then the same strategy can still be used to render some chosen votes invalid.

We have attached example cheating transcripts to this report and encourage the public
to verify them.

2. The soundness of the shuffle proof

The Scytl-Swisspost mixnet uses a provable shuffle due to Bayer and Groth [BG12]. We
describe here an important implementation detail that allows the forging of apparently-
verifying Bayer-Groth proofs. It is not a fault in the B-G proof mechanism, but rather
in this specific implementation of it.

The issue concerns the soundness of the commitments. A core security requirement of
commitment schemes is that they be binding, meaning that once someone has committed
to a particular value, they can open the commitment only to that value.

The Bayer-Groth proof uses a generalisation of Pedersen commitments with multi-
ple generators H,G1, G2, . . . Gn. They describe the scheme as “computationally binding
under the discrete logarithm assumption,” (p.5). This phrasing is slightly confusing to
the naive reader—it would be clearer to say that the scheme is a trapdoor commitment
scheme. Trapdoor commitment schemes have various uses in cryptography (see [Fis01]
for an excellent survey), because they are binding only on the assumption that certain
secrets (the “trapdoors”) are not know to the committer.

The crucial point for the shuffle proof is then to guarantee that no one can learn the
discrete logarithm of any generator H or Gi to base Gj (or of any non-trivial product
of other generators). If someone knows the discrete log of Gi wrt Gj, they can create a
commitment that they can open in multiple ways.

The system should prove, and the verifiers should check, that these generators are
selected properly, that is, without the possibility for anyone to learn a trapdoor except
by computing discrete logs.

In the Scytl-Swisspost code, the commitment parameters are just randomly generated
without a proof of how they arose. Indeed, each mixer generates its own commitment
parameters as follows:

public CommitmentParams(final ZpSubgroup group, final int n) {

this.group = group;

this.h = GroupTools.getRandomElement(group);

this.commitmentlength = n;

this.g = GroupTools.getVectorRandomElement(group, this.commitmentlength);

}

The implementation of getVectorRandomElement gathers random group elements
without proving where they came from. Even more worryingly, getVectorRandomElement
calls getRandomElement, which proceeds as follows:
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Exponent randomExponent = ExponentTools.getRandomExponent(group.getQ());

return group.getGenerator().exponentiate(randomExponent);

This randomExponent, which is used to generate the random group element, is pre-
cisely the trapdoor that is needed to break the binding property of the commitment
scheme. As a result, the binding property completely relies on the expectation that this
randomExponent variable is properly erased from the memory.

These commitment parameters are eventually used in ShuffleProofGenerator.java

to build the shuffle proof.
In summary: the implementation does not provide a proof, and the verifier cannot

check, that the important assumption of discrete log hardness made by Bayer and Groth
is valid here. It is possible for a malicious authority to generate the perfectly random
G1, G2, . . . in a way that, at the same time, gives it a trapdoor that falsifies an assumption
that is central to the security of the Bayer-Groth mixnet construction.

We will show how this can be used to produce a proof of a shuffle that passes verifi-
cation but actually manipulates votes.

2.1. Details about the commitment scheme

The commitment scheme works over a group G of prime order q. The authority is
supposed to choose n + 1 commitment parameters ck = H,G1, G2, . . . , Gn at random
from G. To commit to n values a1, a2, . . . , an, it chooses a random exponent r and
computes

comck(~a; r) = HrΠn
i=1G

ai
i .

Commitment opening consists simply of reporting ~a and r.
Bayer and Groth say clearly that the commitment parameters should be generated at

random and that the soundness of the commitment scheme depends on the hardness of
computing discrete logs in the group. It’s quite obvious that this assumption is necessary.
For example, suppose that a cheating authority generates commitment parameters ck =
H,He1 , He2 . . . , Hen for some H. That is, Gi = Hei for i = 1..n. Then it can open
commitments arbitrarily. A commitment comck(~a; r) can be opened as comck(~b; r′) by
setting

r′ = r +
n∑
i=1

ei(ai − bi) (1)

because

comck(~a; r) = HrΠn
i=1G

ai
i

= HrΠn
i=1H

aiei

= Hr+
∑n

i=1(ai−bi)eiΠn
i=1H

biei

= Hr′Πn
i=1G

bi
i

= comck(~b; r′).
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2.2. Details about the shuffle proof

Now consider how an ability to open commitments arbitrarily could be used to produce
a shuffle proof that verifies but is false.

2.2.1. Faking a proof of ciphertexts with known randomness

Our demonstration shows how an attacker who knows the trapdoor can manipulate any
votes for which it learns the randomness used to generate the vote ciphertext. This would
allow the first mixer, in collusion with voting clients, to manipulate votes undetectably.
A working demonstration transcript is submitted together with this report. Here we
explain how it was generated.

The group G is defined as the subgroup of quadratic residues modulo a large prime,
and each message is a (small quadratic residue) prime, (or the product of such primes,
mod p, but let’s leave out that case for now). We write the primes used to encode the
messages as q1, q2, . . . . The prover commits to applying permutation (shuffle) π.

Suppose we have three input ciphertexts C1 = Epk(M1, ρ
′
1), C2 = Epk(M2, ρ

′
2), C3 =

Epk(M3, ρ
′
3) with known messages M1,M2,M3 and randomness ρ′1, ρ

′
2, ρ
′
3, and one input

ciphertext C4 whose contents and randomness are unknown.
The idea of the cheat is, for each prime qk, to accumulate all the votes for qk, for which

the attacker knows the contents and randomness, into one π(i). The attacker can then
substitute all the other votes (for which it know the randomness) with arbitrary votes
of its own choice.

This attack succeeds with arbitrarily many known and unknown votes, as long as the
number of known votes is larger than the number of candidates that received at least
one vote—the attacker can substitute the votes for which it knows the randomness, and
must honestly shuffle those for which it does not know the randomness.

We illustrate with a small example. Suppose M1 = M2 = q1 and M3 = q2. M4 is
unknown. The cheating prover will apply the identity permutation (just for clarity here,
this has no impact on the attack) and set

C ′1 = Epk(1; ρ1)C1 = Epk(M1, ρ1 + ρ′1)
C ′2 = Epk(1; ρ2)C3 = Epk(M3, ρ2 + ρ′3)
C ′3 = Epk(1; ρ3)C3 = Epk(M3, ρ3 + ρ′3)

and C ′4 = Epk(1; ρ4)C4 = Epk(M4, ρ4 + ρ′4)

If C4 is an encryption of q4 (neither q1 nor q2), the substitution of M3 for M2 in the
second vote changes the winner: it used to be q1; now it’s q2. The cheating prover knows
M1,M2,M3 but not M4. It also knows ρ′i for i = 1, 2, 3 but not ρ′4.

The high-level protocol is described in Bayer & Groth p.8.
Input: m = 2, n = 2, N = 4, ~C = {C1, C2, C3, C4}, ~C ′ as above; permutation π. We

will compute ρ carefully later.
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Suppose the mix has generated the trapdoored commitment key as in Section 2.1.
The cheating shuffler’s initial message ~cA is a (truthful) commitment to π. That is,

~cA = comck( ~A1; r1), comck( ~A2, r2) where ~A1 = (π(1), π(2)) and ~A2 = (π(3), π(4))

It then commits honestly to ~B as

~cB = comck( ~B1; s1), comck( ~B2, s2) where ~B1 = (xπ(1), xπ(2)) and ~B2 = (xπ(3), xπ(4))

Now consider how the cheating shuffler responds to the second challenge y, z and
generates a convincing answer for both parts. In the first part of the challenge, when it
generates answer 1 in response to y, z, it treats ~cB as a commitment to xπ and answers
the product argument (Bayer & Groth Section 5) honestly.

Cheating on the multi-exponentiation argument In the second part of the challenge,
it generates a cheating permutation πcheat, which isn’t actually a permutation, as follows:

πcheat(1) = x+ x2

πcheat(2) = 0
πcheat(3) = x3

πcheat(4) = x4.

The attacker then runs the multi-exponentiation argument from Section 4 of BG
exactly as given, except for the following changes.

• It sets
ρ = −ρ1x− (ρ1 + ρ′1)x

2 + x2ρ′2 − ρ3x3 − ρ4x4. (2)

(See Appendix A.1 for why this works.)

• It treats ~cB = comck( ~B1; s1), comck( ~B2, s2) as a commitment to
πcheat = ((x+ x2, 0)(x3, x4)).

• It computes commitment openings ~s for πcheat using Equation 1 and the random
values s1 and s2.

This produces a proof that passes verification, though the election outcome has been
changed. An example transcript, which passess verification, is attached with this report.

2.2.2. Faking a proof of ciphertexts with unknown randomness

As a second example, we exploit the trapdoor in the commitment scheme to break the
soundness of the proof of shuffle, even in a situation in which we do not know the
randomness or the content of any vote.

In this case, the malicious party could be the last mixer. This mixer indeed has the
advantage of being able to perform the final decryption step, which means that it may
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know the content of the votes that it mixes before actually mixing them. (It could also
be the first mixnet if it has some other way of learning the contents of the votes.)

We make the following assumption (many variants are possible): We know how to
express the prime quadratic residue used to encode a candidate as a power of the gen-
erator G used for ElGamal encryption.1 For instance, the secure 2047-bit subgroup of
quadratic residues provided in the sources is generated by 2, which is used as a the
ElGamal encryption generator and may very well also be chosen to encode a candidate.
In the following example, we use that case for simplicity.

We note that the system specification does not require that at least one of the primes
used to represent candidate should coincide with the generator used for ElGamal en-
cryption. This is however permitted and plausible: the candidate encoding mechanism
used in the system is more efficient when the prime quadratic residues that are used are
as small as possible.

For concreteness, suppose that voters can support as many candidates as they want
and that the last mixer receives input ciphertexts C1 = Epk(M1, ρ

′
1), C2 = Epk(M2, ρ

′
2),

C3 = Epk(M3, ρ
′
3), C4 = Epk(M4, ρ

′
4) such that the candidate “2” does not win the

election.
The last mixer can now perform the final decryption step in order to identify which

of these ciphertexts do not contain a vote for “2”. It does not learn the randomness
ρ′1, ρ

′
2, ρ
′
3, ρ
′
4. Again, for simplicity, let us assume that the mixer finds out that nobody

voted for “2”.
In order to manipulate the outcome, the mixer defines the output ciphertexts as

C ′i = Epk(2, ρi)Ci. By the homomorphic property of ElGamal, We have added a vote for
“2” to each ciphertext. (For ease of exposition we use the identity permutation on the
list of ciphertexts, but any permutation is possible.)

We play the Bayer-Groth shuffle perfectly honestly, except for the multi-exponentiation
argument. Indeed, that argument raises a difficulty because the statement equation

~C~x = Epk(1; ρ) ~C ′
~b

does not hold. Instead, the equation ~C~x = Epk(2−x−x
2−x3−x4 ; ρ) ~C ′

~b

holds, for ρ = −ρ1x−ρ2x2−ρ3x3−ρ4x4, which is known to the mixer. In order to make
the proof pass the verification despite this, we will use the trapdoor of the commitments
in the multi-exponentiation argument.

We follow the notation in Bayer & Groth, Section 4. In the initial message, we cheat
on the commitment cBm = comck(bm, sm): instead of setting bm = sm = 0, we set
bm = −x−x2−x3−x4 and use the trapdoors to compute sm such that comck(bm; sm) =

comck(0; 0). This choice makes sure that cBm = comck(0; 0) and Em = ~C~x, as required
in the first two steps of the proof verification steps.

All the other verification steps pass, as we did not break the truthfullness of any of
the underlying proofs.

1This assumption guarantees that we can actually modify votes in a chosen way. If it is not satisfied,
the strategy discussed here would still make it possible for the last mixer to pick ballots that contain
votes that it does not like, and completely rerandomize them in order to render them invalid. This
targeted modification could also change an election outcome.
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3. Discussion

Correcting the problem The issue needs to be corrected by ensuring that the com-
mitment parameters are generated in a way that prevents any entity from knowing the
discrete logs.2

There are various techniques to do this—they are sometimes called “nothing up my
sleeve numbers.” A standard solution is to derive these group elements directly from
applying a PRG based on a cryptographic hash function, the outputs of which are then
mapped to group elements.3

Every verifier then needs to check the generation of the commitment parameters as
well as the rest of the proof transcript.

Ease of exploiting the problem The first attack requires knowing the randomness used
to generate the vote ciphertexts that will be manipulated. There are several ways this
could be achieved. For example, an attacker could compromise the clients used for voting.
Weak randomness generation (such as that which affected the Norwegian Internet voting
system) would allow the attack to be performed without explicit collusion.

The second attack does not require any extra information at all, though it does rely
on the election parameters having been set up in a particular way, and on multiple
selections being accepted as valid votes.

How can there be a trapdoor when the system has been formally proven secure?
Any formal proof of correctness for any system makes some assumptions that become
axioms in the formal proof. Scytl’s formal proof of security [Scy18] simply models the
mixnet as sound, based on an informal interpretation of Bayer and Groth’s security
proof. It does not model the proper generation of commitment parameters. We do not
see any reason to believe there is an error in Scytl’s proof, but when the axioms are
mistaken the conclusions are not valid.

This does not mean that formal proofs are not valuable—at an absolute minimum,
they clarify assumptions and explain the reasons for trust—but it does mean that they
are not a substitute for broad and open public scrutiny. It is quite possible that there
are errors in the implementations of other cryptographic primitives, that their details
may not be modelled in the formal proofs, and that they may affect either privacy or
verifiability.

Source of the problem Nothing in our analysis suggests that this problem was intro-
duced deliberately. It is entirely consistent with a naive implementation of a complex

2There is an argument that even generating the commitment parameters correctly does not completely
solve the problem, because the group parameters p, q may be generated in a way that makes discrete
logs easy to compute for those with a trapdoor [FGHT17]. Nevertheless this is significantly harder
to exploit than the issue we describe in this report. Still, it would be a good practice to generate p
and q in a publicly verifiable way.

3This technique is used, for example, in the Verificatum mixnet [Wik] (that is, for a different shuffling
algorithm).
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cryptographic protocol by well-intentioned people who lacked a full understanding of its
security assumptions and other important details. Of course, if someone did want to
introduce an opportunity for manipulation, the best method would be one that could
be explained away as an accident if it was found. We simply do not see any evidence
either way.

4. Conclusion

This mixnet has a trapdoor—a malicious administrator or software provider for the mix
could manipulate votes but produce a proof transcript that passes verification. Thus
complete verifiability fails.

Even if this particular issue is corrected, we do not know whether there might be other
ways of manipulating votes while still producing an apparently-valid proof transcript.
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6. A note on code authenticity

We did not officially enrol for the Swiss Post researcher test. We downloaded this
codebase from an unofficial repository and received confirmation of its authenticity from
researchers with access to the official codebase. We are highly confident that this is a
real trapdoor in the current implementation.
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A. Technical detail on how to generate a fake proof
transcript with known randomness

A.1. Calculating ρ

This section shows why we get the expression for ρ that we use above.
We needed to find ρ s.t.

~C~x = Epk(1; ρ) ~C ′
~b

where ~C are the input ciphertexts and ~C ′ are the output ciphertexts. (Bayer-Groth p.8)

LHS = ~C~x

= Π4
j=1C

xj

j

= Epk(qx+x
2

1 qx
3

2 q
x4

4 ;
∑4

i=1 x
iρ′i)

RHS = Epk(1; ρ) ~C ′
~b

= Epk(qx+x
2

1 qx
3

2 q
x4

4 ; ρ+ (ρ1 + ρ′1)(x+ x2) + (ρ3 + ρ′3)x
3 + (ρ4 + ρ′4)x

4).
So ρ = −ρ1x− (ρ1 + ρ′1)x

2 + x2ρ′2 − ρ3x3 − ρ4x4.

Note ρ′4 is unknown but ρ′4x
4 cancels out.
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