
-

UNIX PROGRAMMER’S MANUAL

Fourth Edition

K. Thompson

D. M. Ritchie

November, 1973

Copyright © 1972, 1973
Bell Telephone Laboratories, Inc.

No part of this document may be reproduced,
or distributed outside the Laboratories, without

the written permission of Bell Telephone Laboratories.



-

Copyright © 1972, 1973 Bell Telephone Laboratories, Incorporated

This manual was set by a Graphic Systems photo-
typesetter driven by the troff formatting program op-
erating under the UNIX system. The text of the manu-
al was prepared using the ed text editor.



-

PREFACE
to the Fourth Edition

In the months since the last appearance of this manual, many changes have occurred both in the system it-
self and in the way it is used. The most important changes result from a complete rewrite of the UNIX sys-
tem in the C language. There have also been substantial changes in much of the system software. It is
these changes, of course, which mandated the new edition of this manual.

The number of UNIX installations is now above 20, and many more are expected. None of these has exactly
the same complement of hardware or software. Therefore, at any particular installation, it is quite possible
that this manual will give inappropriate information. In particular, the information in this manual applies

only to UNIX systems which operate under the C language versions of the system. Installations which use
older versions of UNIX will find earlier editions of this manual more appropriate to their situation.

Even in installations which have the latest versions of the operating system, not all the software and other
facilities mentioned herein will be available. For example, the typesetter, voice response unit, and voice
synthesizer are hardly universally available devices; also, some of the UNIX software has not been released
for use outside the Bell System.

The authors are grateful to L. L. Cherry, M. E. Lesk, E. N. Pinson, and C. S. Roberts for their contributions
to the system software, and to L. E. McMahon for software and for his contributions to this manual. We are
particularly appreciative of the invaluable technical, editorial, and administrative efforts of J. F. Ossanna,
M. D. McIlroy, and R. Morris. They all contributed greatly to the stock of UNIX software and to this manu-
al. Their inventiveness, thoughtful criticism, and ungrudging support increased immeasurably not only
whatever success the UNIX system enjoys, but also our own enjoyment in its creation.

1



-

INTRODUCTION TO THIS MANUAL

This manual gives descriptions of the publicly available features of UNIX. It provides neither a general
overview (see ‘‘The UNIX Time-sharing System’’ for that) nor details of the implementation of the system
(which remain to be disclosed).

Within the area it surveys, this manual attempts to be as complete and timely as possible. A conscious de-
cision was made to describe each program in exactly the state it was in at the time its manual section was
prepared. In particular, the desire to describe something as it should be, not as it is, was resisted. In-
evitably, this means that many sections will soon be out of date.

This manual is divided into eight sections:

I. Commands
II. System calls
III. Subroutines
IV. Special files
V. File formats
VI. User-maintained programs
VII. Miscellaneous
VIII. Maintenance

Commands are programs intended to be invoked directly by the user, in contradistinction to subroutines,
which are intended to be called by the user’s programs. Commands generally reside in directory /bin (for
bin ary programs). This directory is searched automatically by the command line interpreter. Some pro-
grams also reside in / usr/ bin, to save space in /bin. Some programs classified as commands are located
elsewhere; this fact is indicated in the appropriate sections.

System calls are entries into the UNIX supervisor. In assembly language, they are coded with the use of the
opcode sys, a synonym for the trap instruction. In this edition, the C language interface routines to the sys-
tem calls have been incorporated in section II.

A small assortment of subroutines is available; they are described in section III. The binary form of most
of them is kept in the system library / lib/ liba.a. The subroutines available from C and from Fortran are al-
so included; they reside in / lib/ libc.a and / lib/ libf.a respectively.

The special files section IV discusses the characteristics of each system ‘‘file’’ which actually refers to an
I/O device. The names in this section refer to the DEC device names for the hardware, instead of the names
of the special files themselves.

The file formats section V documents the structure of particular kinds of files; for example, the form of the
output of the loader and assembler is given. Excluded are files used by only one command, for example the
assembler’s intermediate files.

User-maintained programs (section VI) are not considered part of the UNIX system, and the principal reason
for listing them is to indicate their existence without necessarily giving a complete description. The author
should be consulted for information.

The miscellaneous section (VII) gathers odds and ends.

Section VIII discusses commands which are not intended for use by the ordinary user, in some cases be-
cause they disclose information in which he is presumably not interested, and in others because they per-
form privileged functions.

Each section consists of a number of independent entries of a page or so each. The name of the entry is in
the upper corners of its pages, its preparation date in the upper middle. Entries within each section are al-
phabetized. The page numbers of each entry start at 1. (The earlier hope for frequent, partial updates of the

2



-

manual is clearly in vain, but in any event it is not feasible to maintain consecutive page numbering in a
document like this.)

All entries are based on a common format, not all of whose subsections will always appear.

The name section repeats the entry name and gives a very short description of its purpose.

The synopsis summarizes the use of the program being described. A few conventions are used,
particularly in the Commands section:

Boldface words are considered literals, and are typed just as they appear.

Square brackets ( [ ] ) around an argument indicate that the argument is optional. When
an argument is given as ‘‘name’’, it always refers to a file name.

Ellipses ‘‘. . .’’ are used to show that the previous argument-prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with a
minus sign ‘‘_’’ is often taken to mean some sort of flag argument even if it appears in a
position where a file name could appear. Therefore, it is unwise to have files whose
names begin with ‘‘_’’.

The description section discusses in detail the subject at hand.

The files section gives the names of files which are built into the program.

A see also section gives pointers to related information.

A diagnostics section discusses the diagnostic indications which may be produced. Messages
which are intended to be self-explanatory are not listed.

The bugs section gives known bugs and sometimes deficiencies. Occasionally also the suggested
fix is described.

At the beginning of this document is a table of contents, organized by section and alphabetically within
each section. There is also a permuted index derived from the table of contents. Within each index entry,
the title of the writeup to which it refers is followed by the appropriate section number in parentheses. This
fact is important because there is considerable name duplication among the sections, arising principally
from commands which exist only to exercise a particular system call.

This manual was prepared using the UNIX text editor ed and the formatting program troff.

3



-

HOW TO GET STARTED

This section provides the basic information you need to get started on UNIX: how to log in and log out, how
to communicate through your terminal, and how to run a program.

Logging in. You must call UNIX from an appropriate terminal. UNIX supports ASCII terminals typified by
the TTY 37, the GE Terminet 300, the Memorex 1240, and various graphical terminals. You must also have
a valid user name, which may be obtained, together with the telephone number, from the system adminis-
trators. The same telephone number serves terminals operating at all the standard speeds. After a data con-
nection is established, the login procedure depends on what kind of terminal you are using.

TTY 37 terminal: UNIX will type out ‘‘login: ’’; you respond with your user name. From the TTY

37 terminal, and any other which has the ‘‘new-line’’ function (combined carriage return and line-
feed), terminate each line you type with the ‘‘new-line’’ key (not the ‘‘return’’ key).

300-baud terminals: Such terminals include the GE Terminet 300, most display terminals, Exe-
cuport, TI, and certain Anderson-Jacobson terminals. These terminals generally have a speed
switch which should be set at ‘‘300’’ (or ‘‘30’’ for 30 characters per second) and a half/full duplex
switch which should be set at full-duplex. (Note that this switch will often have to be changed
since many other systems require half-duplex). When a connection is established, a few garbage
characters are typed (the login message at the wrong speed). Depress the ‘‘break’’ key; this is a
speed-independent signal to UNIX that a 300-baud terminal is in use. UNIX will type ‘‘login: ’’ at
the correct speed; you type your user name, followed by the ‘‘return’’ key. Henceforth, the ‘‘re-
turn’’, ‘‘new line’’, or ‘‘linefeed’’ keys will give exactly the same results.

For all these terminals, it is important that you type your name in lower case if possible; if you type upper
case letters, UNIX will assume that your terminal cannot generate lower-case letters and will translate all
subsequent upper-case letters to lower case.

The evidence that you have successfully logged in is that the Shell program will type a ‘‘%’’ to you. (The
Shell is described below under ‘‘How to run a program.’’)

For more information, consult getty (VII), which discusses the login sequence in more detail, and dc (IV),
which discusses typewriter I/O.

Logging out. There are three ways to log out:

You can simply hang up the phone.

You can log out by typing an end-of-file indication (EOT character, control ‘‘d’’) to the Shell. The
Shell will terminate and the ‘‘login: ’’ message will appear again.

You can also log in directly as another user by giving a login command (I).

How to communicate through your terminal. When you type to UNIX, a gnome deep in the system is gath-
ering your characters and saving them in a secret place. The characters will not be given to a program until
you type a return (or new-line), as described above in Logging in.

UNIX typewriter I/O is full-duplex. It has full read-ahead, which means that you can type at any time, even
while a program is typing at you. Of course, if you type during output, the output will have the input char-
acters interspersed. However, whatever you type will be saved up and interpreted in correct sequence.
There is a limit to the amount of read-ahead, but it is generous and not likely to be exceeded unless the sys-
tem is in trouble. When the read-ahead limit is exceeded, the system throws away all the saved characters.
(We reassure you that this doesn’t happen often.)

On a typewriter input line, the character ‘‘@’’ kills all the characters typed before it, so typing mistakes can
be repaired on a single line. Also, the character ‘‘#’’ erases the last character typed. Successive uses of
‘‘#’’ erase characters back to, but not beyond, the beginning of the line. ‘‘@’’ and ‘‘#’’ can be transmitted
to a program by preceding them with ‘‘\’’. (So, to erase ‘‘\’’, you need two ‘‘#’’s).

4



-

The ASCII ‘‘delete’’ (a.k.a. ‘‘rubout’’) character is not passed to programs but instead generates an interrupt

signal. This signal generally causes whatever program you are running to terminate. It is typically used to
stop a long printout that you don’t want. However, programs can arrange either to ignore this signal alto-
gether, or to be notified when it happens (instead of being terminated). The editor, for example, catches in-
terrupts and stops what it is doing, instead of terminating, so that an interrupt can be used to halt an editor
printout without losing the file being edited.

The quit signal is generated by typing the ASCII FS character. It not only causes a running program to ter-
minate but also generates a file with the core image of the terminated process. Quit is useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent about whether you have a terminal
with the new-line function or whether it must be simulated with carriage-return and line-feed. In the latter
case, all input carriage returns are turned to new-line characters (the standard line delimiter) and both a car-
riage return and a line feed are echoed to the terminal. If you get into the wrong mode, the stty command
(I) will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab function,
you can arrange to have them turned into spaces during output, and echoed as spaces during input. The
system assumes that tabs are set every eight columns. Again, the stty command (I) will set or reset this
mode. Also, there is a file which, if printed on TTY 37 or TermiNet 300 terminals, will set the tab stops cor-
rectly (tabs (VII)).

Section dc (IV) discusses typewriter I/O more fully. Section kl (IV) discusses the console typewriter.

How to run a program; The Shell. When you have successfully logged into UNIX, a program called the
Shell is listening to your terminal. The Shell reads typed-in lines, splits them up into a command name and
arguments, and executes the command. A command is simply an executable program. The Shell looks first
in your current directory (see next section) for a program with the given name, and if none is there, then in
a system directory. There is nothing special about system-provided commands except that they are kept in
a directory where the Shell can find them.

The command name is always the first word on an input line; it and its arguments are separated from one
another by spaces.

When a program terminates, the Shell will ordinarily regain control and type a ‘‘%’’ at you to indicate that
it is ready for another command.

The Shell has many other capabilities, which are described in detail in section sh (I).

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the system ad-
ministrator gav e you a user name, he also created a directory for you (ordinarily with the same name as
your user name). When you log in, any file name you type is by default in this directory. Since you are the
owner of this directory, you have full permissions to read, write, alter, or destroy its contents. Permissions
to have your will with other directories and files will have been granted or denied to you by their owners.
As a matter of observed fact, few UNIX users protect their files from destruction, let alone perusal, by other
users.

To change the current directory (but not the set of permissions you were endowed with at login) use chdir

(I).

Path names. To refer to files not in the current directory, you must use a path name. Full path names begin
with ‘‘/’’, the name of the root directory of the whole file system. After the slash comes the name of each
directory containing the next sub-directory (followed by a ‘‘/’’) until finally the file name is reached. E.g.:
/ usr/ lem/ filex refers to the file filex in the directory lem; lem is itself a subdirectory of usr; usr springs di-
rectly from the root directory.

If your current directory has subdirectories, the path names of files therein begin with the name of the sub-
directory (no prefixed ‘‘/’’).

Without important exception, a path name may be used anywhere a file name is required.

5



-

Important commands which modify the contents of files are cp (I), mv (I), and rm (I), which respectively
copy, move (i.e. rename) and remove files. To find out the status of files or directories, use ls (I). See mkdir

(I) for making directories; rmdir (I) for destroying them.

For a fuller discussion of the file system, see ‘‘The UNIX Time-Sharing System,’’ by the present authors, to
appear in the Communications of the ACM; a version is also available from the same source as this manual.
It may also be useful to glance through section II of this manual, which discusses system calls, even if you
don’t intend to deal with the system at the assembly-language level.

Writing a program. To enter the text of a source program into a UNIX file, use ed (I). The three principal
languages in UNIX are assembly language (see as (I)), Fortran (see fc (I)), and C (see cc (I)). After the pro-
gram text has been entered through the editor and written on a file, you can give the file to the appropriate
language processor as an argument. The output of the language processor will be left on a file in the cur-
rent directory named ‘‘a.out’’. (If the output is precious, use mv to move it to a less exposed name soon.) If
you wrote in assembly language, you will probably need to load the program with library subroutines; see
ld (I). The other two language processors call the loader automatically.

When you have finally gone through this entire process without provoking any diagnostics, the resulting
program can be run by giving its name to the Shell in response to the ‘‘%’’ prompt.

The next command you will need is db (I). As a debugger, db is better than average for assembly-language
programs, marginally useful for C programs (when completed, cdb (I) will be a boon), and virtually useless
for Fortran.

Your programs can receive arguments from the command line just as system programs do. See exec (II).

Te xt processing. Almost all text is entered through the editor. The commands most often used to write text
on a terminal are: cat, pr, roff, nroff , and troff, all in section I.

The cat command simply dumps ASCII text on the terminal, with no processing at all. The pr command
paginates the text, supplies headings, and has a facility for multi-column output. Tr off and nroff are elabo-
rate text formatting programs, and require careful forethought in entering both the text and the formatting
commands into the input file. Tr off drives a Graphic Systems phototypesetter; it was used to produce this
manual. Nroff produces output on a typewriter terminal. Roff (I) is a somewhat less elaborate text format-
ting program, and requires somewhat less forethought.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to use them, it
would be well to learn something about them, because someone else may aim them at you.

To communicate with another user currently logged in, write (I) is used; mail (I) will leave a message
whose presence will be announced to another user when he next logs in. The write-ups in the manual also
suggest how to respond to the two commands if you are a target.

When you log in, a message-of-the-day may greet you before the first ‘‘%’’.

6



-

TABLE OF CONTENTS

I. COMMANDS

ar . . . . . . . . . . . . . . . . . . . archive and library maintainer
as . . . . . . . . . . . . . . . . . . . . . . . . . . . . assembler
bas . . . . . . . . . . . . . . . . . . . . . . . . . . . . basic
cat . . . . . . . . . . . . . . . . . . . . . . concatenate and print
catsim . . . . . . . . . . . . . . . . . . . phototypesetter simulator
cc . . . . . . . . . . . . . . . . . . . . . . . . . . C compiler
cdb . . . . . . . . . . . . . . . . . . . . . . . . . . C debugger
chdir . . . . . . . . . . . . . . . . . . . change working directory
chmod . . . . . . . . . . . . . . . . . . . . . . . . change mode
chown . . . . . . . . . . . . . . . . . . . . . . . . change owner
cmp . . . . . . . . . . . . . . . . . . . . . . . compare two files
comm . . . . . . . . . . . . . . . . . print lines common to two files
cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . copy
cref . . . . . . . . . . . . . . . . . . . make cross reference listing
date . . . . . . . . . . . . . . . . . . . . . . print and set the date
db . . . . . . . . . . . . . . . . . . . . . . . . . . . . debug
dc . . . . . . . . . . . . . . . . . . . . . . . . desk calculator
dsw . . . . . . . . . . . . . . . . . . . . . . . delete interactively
du . . . . . . . . . . . . . . . . . . . . . . summarize disk usage
echo . . . . . . . . . . . . . . . . . . . . . . . echo arguments
ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . editor
exit . . . . . . . . . . . . . . . . . . . . . terminate command file
factor . . . . . . . . . . . . . . . . discover prime factors of a number
fc . . . . . . . . . . . . . . . . . . . . . . . . . fortran compiler
fed . . . . . . . . . . . . . . . edit associative memory for form letter
file . . . . . . . . . . . . . . . . . . . . . determine format of file
form . . . . . . . . . . . . . . . . . . . . . form letter generator
goto . . . . . . . . . . . . . . . . . . . . . . . command transfer
grep . . . . . . . . . . . . . . . . . . . . . search a file for a pattern
if . . . . . . . . . . . . . . . . . . . . . . . conditional command
kill . . . . . . . . . . . . . . . . . . . . do in an unwanted process
ld . . . . . . . . . . . . . . . . . . . . . . . . . . . link editor
ln . . . . . . . . . . . . . . . . . . . . . . . . . . . make a link
login . . . . . . . . . . . . . . . . . . . . . . . sign onto UNIX
ls . . . . . . . . . . . . . . . . . . . . . . list contents of directory
mail . . . . . . . . . . . . . . . . . . . . send mail to another user
man . . . . . . . . . . . . . . . . . . run off section of UNIX manual
merge . . . . . . . . . . . . . . . . . . . . . . merge several files
mesg . . . . . . . . . . . . . . . . . . . . permit or deny messages
mkdir . . . . . . . . . . . . . . . . . . . . . . . make a directory
mv . . . . . . . . . . . . . . . . . . . . . . move or rename a file
nice . . . . . . . . . . . . . . . . . . run a command at low priority
nm . . . . . . . . . . . . . . . . . . . . . . . . . print name list
nohup . . . . . . . . . . . . . . . run a command immune to hangups
nroff . . . . . . . . . . . . . . . . . . . . . . . . . format text
od . . . . . . . . . . . . . . . . . . . . . . . . . . octal dump
opr . . . . . . . . . . . . . . . . . . . . . . . . . off line print
passwd . . . . . . . . . . . . . . . . . . . . . set login password
pfe . . . . . . . . . . . . . . . . . . . . . print floating exception

7



-

plot . . . . . . . . . . . . . . . . . . . . . . . . . make a graph
pr . . . . . . . . . . . . . . . . . . . . . . . . . . . . print file
proof . . . . . . . . . . . . . . . . . . . . . compare two text files
ps . . . . . . . . . . . . . . . . . . . . . . . . . process status
rew . . . . . . . . . . . . . . . . . . . . . . . . . . rewind tape
rm . . . . . . . . . . . . . . . . . . . . . . remove (unlink) files
rmdir . . . . . . . . . . . . . . . . . . . . . . . remove directory
roff . . . . . . . . . . . . . . . . . . . . . . . . . . format text
sh . . . . . . . . . . . . . . . . . . . shell (command interpreter)
shift . . . . . . . . . . . . . . . . . . . . . adjust Shell arguments
size . . . . . . . . . . . . . . . . . . . . . . size of an object file
sleep . . . . . . . . . . . . . . . . suspend execution for an interval
sno . . . . . . . . . . . . . . . . . . . . . . . Snobol interpreter
sort . . . . . . . . . . . . . . . . . . . . . . . . . . . sort a file
speak . . . . . . . . . . . . . . . . . . . . word to voice translator
split . . . . . . . . . . . . . . . . . . . . . . split a file into pieces
strip . . . . . . . . . . . . . . . . remove symbols and relocation bits
stty . . . . . . . . . . . . . . . . . . . . . . . set teletype options
sum . . . . . . . . . . . . . . . . . . . . . . . . . . . sum file
time . . . . . . . . . . . . . . . . . . . . . . . . time a command
tp . . . . . . . . . . . . . . . . . . manipulate DECtape and magtape
tr . . . . . . . . . . . . . . . . . . . . . . . . . . . transliterate
troff . . . . . . . . . . . . . . . . . . . . . . . . . . format text
tss . . . . . . . . . . . . . . . . . . . . . . interface to MH-TSS
tty . . . . . . . . . . . . . . . . . . . . . . . get typewriter name
type . . . . . . . . . . . . . . . . . . . . . . . . . type on 2741
typo . . . . . . . . . . . . . . . . . . . . . . . find possible typos
uniq . . . . . . . . . . . . . . . . . . . report repeated lines in a file
wait . . . . . . . . . . . . . . . . . . . aw ait completion of process
wc . . . . . . . . . . . . . . . . . . . . . get (English) word count
who . . . . . . . . . . . . . . . . . . . . . . who is on the system
write . . . . . . . . . . . . . . . . . . . . . write to another user

II. SYSTEM CALLS

break . . . . . . . . . . . . . . . . . . . . . . set program break
chdir . . . . . . . . . . . . . . . . . . . change working directory
chmod . . . . . . . . . . . . . . . . . . . . . . change mode of file
chown . . . . . . . . . . . . . . . . . . . . . . . . change owner
close . . . . . . . . . . . . . . . . . . . . . . . . . close a file
creat . . . . . . . . . . . . . . . . . . . . . . . create a new file
csw . . . . . . . . . . . . . . . . . . . . . . read console switches
dup . . . . . . . . . . . . . . . . . . duplicate an open file descriptor
exec . . . . . . . . . . . . . . . . . . . . . . . . . execute a file
exit . . . . . . . . . . . . . . . . . . . . . . . terminate process
fork . . . . . . . . . . . . . . . . . . . . . . . spawn new process
fstat . . . . . . . . . . . . . . . . . . . . . . get status of open file
getgid . . . . . . . . . . . . . . . . . . . . get group identification
getuid . . . . . . . . . . . . . . . . . . . . . get user identification
gtty . . . . . . . . . . . . . . . . . . . . . . get typewriter status
indir . . . . . . . . . . . . . . . . . . . . . . indirect system call
kill . . . . . . . . . . . . . . . . . . . . . send signal to a process
link . . . . . . . . . . . . . . . . . . . . . . . . . . link to a file

8



-

mknod . . . . . . . . . . . . . . . . make a directory or a special file
mount . . . . . . . . . . . . . . . . . . . . . . mount file system
nice . . . . . . . . . . . . . . . . . . . . . . . set program priority
open . . . . . . . . . . . . . . . . . . . open for reading or writing
pipe . . . . . . . . . . . . . . . . . . . . . . . . . create a pipe
read . . . . . . . . . . . . . . . . . . . . . . . . . read from file
seek . . . . . . . . . . . . . . . . . . . . . move read/write pointer
setgid . . . . . . . . . . . . . . . . . . . . . set process group ID
setuid . . . . . . . . . . . . . . . . . . . . . . set process user ID
signal . . . . . . . . . . . . . . . . . . . . catch or ignore signals
sleep . . . . . . . . . . . . . . . . . . . stop execution for interval
stat . . . . . . . . . . . . . . . . . . . . . . . . . get file status
stime . . . . . . . . . . . . . . . . . . . . . . . . . . set time
stty . . . . . . . . . . . . . . . . . . . . . set mode of typewriter
sync . . . . . . . . . . . . . . . . . . . . . . . update super-block
time . . . . . . . . . . . . . . . . . . . . . . . . get date and time
times . . . . . . . . . . . . . . . . . . . . . . . get process times
umount . . . . . . . . . . . . . . . . . . . . dismount file system
unlink . . . . . . . . . . . . . . . . . . . . remove directory entry
wait . . . . . . . . . . . . . . . . . . . . . . wait for process to die
write . . . . . . . . . . . . . . . . . . . . . . . . write on a file

III. SUBROUTINES

atan . . . . . . . . . . . . . . . . . . . . . . . arc tangent function
atof . . . . . . . . . . . . . . . . . . . . . . . . ascii to floating
compar . . . . . . . . . . . . . . default comparison routine for qsort
crypt . . . . . . . . . . . . . . . . . . . . . . password encoding
ctime . . . . . . . . . . . . . . . . . convert date and time to ASCII
ecvt . . . . . . . . . . . . . . . . . . . . . . . output conversion
exp . . . . . . . . . . . . . . . . . . . . . . exponential function
fptrap . . . . . . . . . . . . . . . . . . . . floating point interpreter
gerts . . . . . . . . . . . . . . . . . Gerts communication over 201
getc . . . . . . . . . . . . . . . . . . . . . . . . . buffered input
getchar . . . . . . . . . . . . . . . . . . . . . . . read character
getpw . . . . . . . . . . . . . . . . . . . . . . get name from UID
hmul . . . . . . . . . . . . . . . . . . . . . . high-order product
hypot . . . . . . . . . . . . . . . . . . . . . calculate hypotenuse
ierror . . . . . . . . . . . . . . . . . . . . . . catch Fortran errors
ldiv . . . . . . . . . . . . . . . . . . . . . . . . . long division
log . . . . . . . . . . . . . . . . . . . . . . . . natural logarithm
mesg . . . . . . . . . . . . . . . . . . write message on typewriter
nargs . . . . . . . . . . . . . . . . . . . . . . . argument count
nlist . . . . . . . . . . . . . . . . . . . . get entries from name list
perror . . . . . . . . . . . . . . . . . . . . . system error messages
pow . . . . . . . . . . . . . . . . . . . . . floating exponentiation
printf . . . . . . . . . . . . . . . . . . . . . . . formatted print
putc . . . . . . . . . . . . . . . . . . . . . . . . buffered output
putchar . . . . . . . . . . . . . . . . . . . . . . . write character
qsort . . . . . . . . . . . . . . . . . . . . . . . . . quicker sort
rand . . . . . . . . . . . . . . . . . . . . random number generator
reset . . . . . . . . . . . . . . . . . . . . execute non-local goto
setfil . . . . . . . . . . . . . . . . . . . specify Fortran file name

9



-

sin . . . . . . . . . . . . . . . . . . . . . . . . . . sine, cosine
sqrt . . . . . . . . . . . . . . . . . . . . . . square root function
switch . . . . . . . . . . . . . . . . . . . . . . . switch on value
ttyn . . . . . . . . . . . . . . . . . return name of current typewriter
vt . . . . . . . . . . . . . . . . . . . . . . display (vt01) interface

IV. SPECIAL FILES

cat . . . . . . . . . . . . . . . . . . . . . phototypesetter interface
da . . . . . . . . . . . . . . . . . . . . . . . voice response unit
dc . . . . . . . . . . . . . . . . . DC-11 communications interface
dn . . . . . . . . . . . . . . . . . . . . . . dn11 ACU interface
dp . . . . . . . . . . . . . . . . . . dp11 201 data-phone interface
kl . . . . . . . . . . . . . . . . . . KL-11/TTY-33 console typewriter
mem . . . . . . . . . . . . . . . . . . . . . . . . core memory
pc . . . . . . . . . . . . . . . . . . PC-11 paper tape reader/punch
rf . . . . . . . . . . . . . . . . . . . RF11/RS11 fixed-head disk file
rk . . . . . . . . . . . . . . . . . . . . RK-11/RK03 (or RK05) disk
rp . . . . . . . . . . . . . . . . . . . RP-11/RP03 moving-head disk
tc . . . . . . . . . . . . . . . . . . . . . . TC-11/TU56 DECtape
tiu . . . . . . . . . . . . . . . . . . . . . . . . Spider interface
tm . . . . . . . . . . . . . . . . . TM-11/TU-10 magtape interface
vs . . . . . . . . . . . . . . . . . . . . voice synthesizer interface
vt . . . . . . . . . . . . . . . . . . . . . . . 11/20 (vt01) interface

V. FILE FORMATS

a.out . . . . . . . . . . . . . . . . . assembler and link editor output
ar . . . . . . . . . . . . . . . . . . . . . archive (library) file format
core . . . . . . . . . . . . . . . . . . . . . format of core image file
dir . . . . . . . . . . . . . . . . . . . . . . format of directories
fs . . . . . . . . . . . . . . . . . . . . format of file system volume
passwd . . . . . . . . . . . . . . . . . . . . . . . password file
tp . . . . . . . . . . . . . . . . . . . . . . DEC/mag tape formats
utmp . . . . . . . . . . . . . . . . . . . . . . . user information
wtmp . . . . . . . . . . . . . . . . . . . . . . user login history

VI. USER MAINTAINED PROGRAMS

azel . . . . . . . . . . . . . . . . . . . . obtain satellite predictions
bj . . . . . . . . . . . . . . . . . . . . . . the game of black jack
cal . . . . . . . . . . . . . . . . . . . . . . . . . print calendar
chess . . . . . . . . . . . . . . . . . . . . . . the game of chess
cubic . . . . . . . . . . . . . . . . . . three dimensional tic-tac-toe
hyphen . . . . . . . . . . . . . . . . . . . find hyphenated words
m6 . . . . . . . . . . . . . . . . . general purpose macro processor
maze . . . . . . . . . . . . . . . . . . . generate a maze problem
moo . . . . . . . . . . . . . . . . . . . . . . . . . guessing game
ov . . . . . . . . . . . . . . . . . . . . . . . . . overlay pages
ptx . . . . . . . . . . . . . . . . . . . . . . . . permuted index
sky . . . . . . . . . . . . . . . . . . . . . . . obtain ephemerides
spline . . . . . . . . . . . . . . . . . . . . interpolate smooth curve
tmg . . . . . . . . . . . . . . . . . . . . . . . compiler-compiler

10



-

ttt . . . . . . . . . . . . . . . . . . . . . . . . . . . tic-tac-toe
yacc . . . . . . . . . . . . . . . . . . yet another compiler-compiler

VII. MISCELLANEOUS

ascii . . . . . . . . . . . . . . . . . . . . map of ASCII character set
dpd . . . . . . . . . . . . . . . . . . . . spawn data phone daemon
getty . . . . . . . . . . . . . . . . . . . . . . set typewriter mode
glob . . . . . . . . . . . . . . . . . . . generate command arguments
greek . . . . . . . . . . . . . . . graphics for extended ascii type-box
init . . . . . . . . . . . . . . . . . . . process control initialization
msh . . . . . . . . . . . . . . . . . . . . . . . . . . mini-shell
tabs . . . . . . . . . . . . . . . . . . . . . . . . . . set tab stops
tmheader . . . . . . . . . . . . . . . . . . . . . . TM cover sheet
vs . . . . . . . . . . . . . . . . . . . . . voice synthesizer code

VIII. SYSTEM MAINTAINANCE

20boot . . . . . . . . . . . . . . . . . . . . install new 11/20 system
boot procedures . . . . . . . . . . . . . . . . . . . . UNIX startup
check . . . . . . . . . . . . . . . . . . file system consistency check
clri . . . . . . . . . . . . . . . . . . . . . . . . . . clear i-node
df . . . . . . . . . . . . . . . . . . . . . . . . . . . . disk free
ino . . . . . . . . . . . . . . . . . . . . . get the i-number of a file
mkfs . . . . . . . . . . . . . . . . . . . . . construct a file system
mknod . . . . . . . . . . . . . . . . . . . . . . . build special file
mount . . . . . . . . . . . . . . . . . . . . . . mount file system
reloc . . . . . . . . . . . . . . . . . . . . . . relocate object files
su . . . . . . . . . . . . . . . . . . . . . become privileged user
sync . . . . . . . . . . . . . . . . . . . . . update the super block
umount . . . . . . . . . . . . . . . . . . . . dismount file system
update . . . . . . . . . . . . . . . periodically update the super block

11



-

PERMUTED INDEX

20boot(VIII) install new 11/20 system
vt(IV) 11/20 (vt01) interface

dp(IV) dp11 201 data-phone interface
gerts(III) Gerts communication over 201

20boot(VIII) install new 11/20 system
type(I) type on 2741

a.out(V) assembler and link editor output
dn(IV) dn11 ACU interface

shift(I) adjust Shell arguments
yacc(VI) yet another compiler-compiler

mail(I) send mail to another user
write(I) write to another user

atan(III) arc tangent function
ar(I) archive and library maintainer

ar(V) archive (library) file format
nargs(III) argument count

echo(I) echo arguments
glob(VII) generate command arguments

shift(I) adjust Shell arguments
ar(I) archive and library maintainer
ar(V) archive (library) file format

ascii(VII) map of ASCII character set
atof(III) ascii to floating

greek(VII) graphics for extended ascii type-box
ascii(VII) map of ASCII character set

ctime(III) convert date and time to ASCII
as(I) assembler

a.out(V) assembler and link editor output
as(I) assembler

fed(I) edit associative memory for form letter
nice(I) run a command at low priority

atan(III) arc tangent function
atof(III) ascii to floating

wait(I) await completion of process
azel(VI) obtain satellite predictions
bas(I) basic

bas(I) basic
su(VIII) become privileged user

strip(I) remove symbols and relocation bits
bj(VI) the game of black jack

bj(VI) the game of black jack
sync(VIII) update the super block

update(VIII) periodically update the super block
boot procedures(VIII) UNIX startup
break(II) set program break

break(II) set program break
getc(III) buffered input
putc(III) buffered output

mknod(VIII) build special file
cc(I) C compiler

cdb(I) C debugger

12



-

hypot(III) calculate hypotenuse
dc(I) desk calculator

cal(VI) print calendar
indir(II) indirect system call

cal(VI) print calendar
ierror(III) catch Fortran errors
signal(II) catch or ignore signals

cat(I) concatenate and print
cat(IV) phototypesetter interface
catsim(I) phototypesetter simulator
cc(I) C compiler
cdb(I) C debugger

chmod(II) change mode of file
chmod(I) change mode
chown(I) change owner

chown(II) change owner
chdir(I) change working directory

chdir(II) change working directory
ascii(VII) map of ASCII character set

getchar(III) read character
putchar(III) write character

chdir(I) change working directory
chdir(II) change working directory
check(VIII) file system consistency check

check(VIII) file system consistency check
chess(VI) the game of chess

chess(VI) the game of chess
chmod(I) change mode
chmod(II) change mode of file
chown(I) change owner
chown(II) change owner

clri(VIII) clear i-node
close(II) close a file

close(II) close a file
clri(VIII) clear i-node
cmp(I) compare two files

vs(VII) voice synthesizer code
glob(VII) generate command arguments

nice(I) run a command at low priority
exit(I) terminate command file

nohup(I) run a command immune to hangups
sh(I) shell (command interpreter)

goto(I) command transfer
if(I) conditional command

time(I) time a command
comm(I) print lines common to two files

comm(I) print lines common to two files
gerts(III) Gerts communication over 201
dc(IV) DC-11 communications interface

cmp(I) compare two files
proof(I) compare two text files

compar(III) default comparison routine for qsort
compar(III) default comparison routine for qsort

13



-

tmg(VI) compiler-compiler
yacc(VI) yet another compiler-compiler

cc(I) C compiler
fc(I) fortran compiler

wait(I) await completion of process
cat(I) concatenate and print

if(I) conditional command
check(VIII) file system consistency check

csw(II) read console switches
kl(IV) KL-11/TTY-33 console typewriter

mkfs(VIII) construct a file system
ls(I) list contents of directory

init(VII) process control initialization
ecvt(III) output conversion

ctime(III) convert date and time to ASCII
cp(I) copy

core(V) format of core image file
mem(IV) core memory

core(V) format of core image file
sin(III) sine, cosine

nargs(III) argument count
wc(I) get (English) word count

tmheader(VII) TM cover sheet
cp(I) copy

creat(II) create a new file
pipe(II) create a pipe

creat(II) create a new file
cref(I) make cross reference listing

cref(I) make cross reference listing
crypt(III) password encoding
csw(II) read console switches
ctime(III) convert date and time to ASCII
cubic(VI) three dimensional tic-tac-toe

ttyn(III) return name of current typewriter
spline(VI) interpolate smooth curve

dpd(VII) spawn data phone daemon
da(IV) voice response unit

dpd(VII) spawn data phone daemon
dp(IV) dp11 201 data-phone interface

ctime(III) convert date and time to ASCII
time(II) get date and time

date(I) print and set the date
date(I) print and set the date

db(I) debug
dc(IV) DC-11 communications interface

dc(I) desk calculator
dc(IV) DC-11 communications interface

cdb(I) C debugger
db(I) debug
tp(V) DEC/mag tape formats

tp(I) manipulate DECtape and magtape
tc(IV) TC-11/TU56 DECtape

compar(III) default comparison routine for qsort

14



-

dsw(I) delete interactively
mesg(I) permit or deny messages

dup(II) duplicate an open file descriptor
dc(I) desk calculator

file(I) determine format of file
df(VIII) disk free

wait(II) wait for process to die
cubic(VI) three dimensional tic-tac-toe

dir(V) format of directories
unlink(II) remove directory entry
mknod(II) make a  directory or a special file

chdir(I) change working directory
chdir(II) change working directory

ls(I) list contents of directory
mkdir(I) make a  directory
rmdir(I) remove directory

dir(V) format of directories
factor(I) discover prime factors of a number

rf(IV) RF11/RS11 fixed-head disk file
df(VIII) disk free

du(I) summarize disk usage
rk(IV) RK-11/RK03 (or RK05) disk

rp(IV) RP-11/RP03 moving-head disk
umount(II) dismount file system

umount(VIII) dismount file system
vt(III) display (vt01) interface

ldiv(III) long division
dn(IV) dn11 ACU interface

dn(IV) dn11 ACU interface
kill(I) do in an unwanted process

dp(IV) dp11 201 data-phone interface
dpd(VII) spawn data phone daemon
dp(IV) dp11 201 data-phone interface
dsw(I) delete interactively
du(I) summarize disk usage

od(I) octal dump
dup(II) duplicate an open file descriptor

dup(II) duplicate an open file descriptor
echo(I) echo arguments

echo(I) echo arguments
ecvt(III) output conversion
ed(I) editor

fed(I) edit associative memory for form letter
a.out(V) assembler and link editor output

ed(I) editor
ld(I) link editor

crypt(III) password encoding
wc(I) get (English) word count

nlist(III) get entries from name list
unlink(II) remove directory entry

sky(VI) obtain ephemerides
perror(III) system error messages

ierror(III) catch Fortran errors

15



-

pfe(I) print floating exception
exec(II) execute a file

exec(II) execute a file
reset(III) execute non-local goto

sleep(I) suspend execution for an interval
sleep(II) stop execution for interval

exit(I) terminate command file
exit(II) terminate process
exp(III) exponential function

exp(III) exponential function
pow(III) floating exponentiation

greek(VII) graphics for extended ascii type-box
factor(I) discover prime factors of a number

factor(I) discover prime factors of a number
fc(I) fortran compiler
fed(I) edit associative memory for form letter

dup(II) duplicate an open file descriptor
grep(I) search a file for a pattern

ar(V) archive (library) file format
split(I) split a file into pieces

setfil(III) specify Fortran file name
stat(II) get file status

check(VIII) file system consistency check
fs(V) format of file system volume

mkfs(VIII) construct a file system
mount(II) mount file system

mount(VIII) mount file system
umount(II) dismount file system

umount(VIII) dismount file system
file(I) determine format of file

cmp(I) compare two files
comm(I) print lines common to two files

merge(I) merge several files
proof(I) compare two text files
reloc(VIII) relocate object files

rm(I) remove (unlink) files
chmod(II) change mode of file

close(II) close a file
core(V) format of core image file

creat(II) create a new file
exec(II) execute a file

exit(I) terminate command file
file(I) determine format of file
fstat(II) get status of open file

ino(VIII) get the i-number of a file
link(II) link to a file

mknod(II) make a directory or a special file
mknod(VIII) build special file

mv(I) move or rename a file
passwd(V) password file

pr(I) print file
read(II) read from file

rf(IV) RF11/RS11 fixed-head disk file

16



-

size(I) size of an object file
sort(I) sort a file
sum(I) sum file

uniq(I) report repeated lines in a file
write(II) write on a file

hyphen(VI) find hyphenated words
typo(I) find possible typos

rf(IV) RF11/RS11 fixed-head disk file
pfe(I) print floating exception

pow(III) floating exponentiation
fptrap(III) floating point interpreter

atof(III) ascii to floating
fork(II) spawn new process

form(I) form letter generator
fed(I) edit associative memory for form letter

core(V) format of core image file
dir(V) format of directories
fs(V) format of file system volume

file(I) determine format of file
nroff(I) format text

roff(I) format text
troff(I) format text

tp(V) DEC/mag tape formats
printf(III) formatted print

ar(V) archive (library) file format
form(I) form letter generator

fc(I) fortran compiler
ierror(III) catch Fortran errors

setfil(III) specify Fortran file name
fptrap(III) floating point interpreter

df(VIII) disk free
read(II) read from file

nlist(III) get entries from name list
getpw(III) get name from UID

fstat(II) get status of open file
fs(V) format of file system volume

atan(III) arc tangent function
exp(III) exponential function
sqrt(III) square root function

bj(VI) the game of black jack
chess(VI) the game of chess

moo(VI) guessing game
m6(VI) general purpose macro processor

maze(VI) generate a maze problem
glob(VII) generate command arguments

form(I) form letter generator
rand(III) random number generator

gerts(III) Gerts communication over 201
gerts(III) Gerts communication over 201

time(II) get date and time
wc(I) get (English) word count

nlist(III) get entries from name list
stat(II) get file status

17



-

getgid(II) get group identification
getpw(III) get name from UID

times(II) get process times
fstat(II) get status of open file

ino(VIII) get the i-number of a file
tty(I) get typewriter name

gtty(II) get typewriter status
getuid(II) get user identification

getchar(III) read character
getc(III) buffered input
getgid(II) get group identification
getpw(III) get name from UID
getty(VII) set typewriter mode
getuid(II) get user identification
glob(VII) generate command arguments
goto(I) command transfer

reset(III) execute non-local goto
greek(VII) graphics for extended ascii type-box

plot(I) make a  graph
greek(VII) graphics for extended ascii type-box
grep(I) search a file for a pattern

getgid(II) get group identification
setgid(II) set process group ID

gtty(II) get typewriter status
moo(VI) guessing game

nohup(I) run a command immune to hangups
hmul(III) high-order product

wtmp(V) user login history
hmul(III) high-order product

hyphen(VI) find hyphenated words
hyphen(VI) find hyphenated words

hypot(III) calculate hypotenuse
hypot(III) calculate hypotenuse

clri(VIII) clear i-node
ino(VIII) get the i-number of a file

getgid(II) get group identification
getuid(II) get user identification

setgid(II) set process group ID
setuid(II) set process user ID

ierror(III) catch Fortran errors
if(I) conditional command

signal(II) catch or ignore signals
core(V) format of core image file

nohup(I) run a command immune to hangups
uniq(I) report repeated lines in a file

kill(I) do in an unwanted process
ptx(VI) permuted index

indir(II) indirect system call
indir(II) indirect system call

utmp(V) user information
init(VII) process control initialization

init(VII) process control initialization
ino(VIII) get the i-number of a file

18



-

getc(III) buffered input
20boot(VIII) install new 11/20 system
dsw(I) delete interactively

tss(I) interface to MH-TSS
cat(IV) phototypesetter interface

dc(IV) DC-11 communications interface
dn(IV) dn11 ACU interface

dp(IV) dp11 201 data-phone interface
tiu(IV) Spider interface

tm(IV) TM-11/TU-10 magtape interface
vs(IV) voice synthesizer interface

vt(III) display (vt01) interface
vt(IV) 11/20 (vt01) interface

spline(VI) interpolate smooth curve
sh(I) shell (command interpreter)

fptrap(III) floating point interpreter
sno(I) Snobol interpreter

sleep(I) suspend execution for an interval
sleep(II) stop execution for interval

split(I) split a file into pieces
bj(VI) the game of black jack

kill(I) do in an unwanted process
kill(II) send signal to a process

kl(IV) KL-11/TTY-33 console typewriter
kl(IV) KL-11/TTY-33 console typewriter
ld(I) link editor
ldiv(III) long division

form(I) form letter generator
fed(I) edit associative memory for form letter

ar(I) archive and library maintainer
ar(V) archive (library) file format

opr(I) off line print
comm(I) print lines common to two files

uniq(I) report repeated lines in a file
a.out(V) assembler and link editor output

ld(I) link editor
link(II) link to a file

link(II) link to a file
ln(I) make a  link

ls(I) list contents of directory
cref(I) make cross reference listing

nlist(III) get entries from name list
nm(I) print name list

ln(I) make a link
log(III) natural logarithm

log(III) natural logarithm
wtmp(V) user login history
passwd(I) set login password

login(I) sign onto UNIX
ldiv(III) long division

nice(I) run a command at low priority
ls(I) list contents of directory
m6(VI) general purpose macro processor

19



-

m6(VI) general purpose macro processor
tm(IV) TM-11/TU-10 magtape interface

tp(I) manipulate DECtape and magtape
mail(I) send mail to another user

mail(I) send mail to another user
ar(I) archive and library maintainer

mknod(II) make a directory or a special file
mkdir(I) make a directory

plot(I) make a graph
ln(I) make a link

cref(I) make cross reference listing
man(I) run off section of UNIX manual

tp(I) manipulate DECtape and magtape
man(I) run off section of UNIX manual

ascii(VII) map of ASCII character set
maze(VI) generate a maze problem

maze(VI) generate a maze problem
mem(IV) core memory

fed(I) edit associative memory for form letter
mem(IV) core memory

merge(I) merge several files
merge(I) merge several files
mesg(I) permit or deny messages
mesg(III) write message on typewriter

mesg(III) write message on typewriter
mesg(I) permit or deny messages
perror(III) system error messages

tss(I) interface to MH-TSS
msh(VII) mini-shell

mkdir(I) make a directory
mkfs(VIII) construct a file system
mknod(II) make a directory or a special file
mknod(VIII) build special file

chmod(II) change mode of file
stty(II) set mode of typewriter

chmod(I) change mode
getty(VII) set typewriter mode

moo(VI) guessing game
mount(II) mount file system

mount(VIII) mount file system
mount(II) mount file system
mount(VIII) mount file system

mv(I) move or rename a file
seek(II) move read/write pointer

rp(IV) RP-11/RP03 moving-head disk
msh(VII) mini-shell
mv(I) move or rename a file

getpw(III) get name from UID
nlist(III) get entries from name list

nm(I) print name list
ttyn(III) return name of current typewriter

setfil(III) specify Fortran file name
tty(I) get typewriter name

20



-

nargs(III) argument count
log(III) natural logarithm

20boot(VIII) install new 11/20 system
creat(II) create a new file

fork(II) spawn new process
nice(I) run a command at low priority
nice(II) set program priority
nlist(III) get entries from name list
nm(I) print name list
nohup(I) run a command immune to hangups

reset(III) execute non-local goto
nroff(I) format text

rand(III) random number generator
factor(I) discover prime factors of a number

reloc(VIII) relocate object files
size(I) size of an object file

sky(VI) obtain ephemerides
azel(VI) obtain satellite predictions

od(I) octal dump
od(I) octal dump

opr(I) off line print
man(I) run off section of UNIX manual

login(I) sign onto UNIX
dup(II) duplicate an open file descriptor
fstat(II) get status of open file

open(II) open for reading or writing
open(II) open for reading or writing
opr(I) off line print

stty(I) set teletype options
rk(IV) RK-11/RK03 (or RK05) disk

ecvt(III) output conversion
a.out(V) assembler and link editor output

putc(III) buffered output
gerts(III) Gerts communication over 201

ov(VI) overlay pages
ov(VI) overlay pages

chown(I) change owner
chown(II) change owner

ov(VI) overlay pages
pc(IV) PC-11 paper tape reader/punch

passwd(I) set login password
passwd(V) password file

crypt(III) password encoding
passwd(V) password file

passwd(I) set login password
grep(I) search a file for a pattern

pc(IV) PC-11 paper tape reader/punch
pc(IV) PC-11 paper tape reader/punch

update(VIII) periodically update the super block
mesg(I) permit or deny messages
ptx(VI) permuted index

perror(III) system error messages
pfe(I) print floating exception

21



-

dpd(VII) spawn data phone daemon
cat(IV) phototypesetter interface

catsim(I) phototypesetter simulator
split(I) split a file into pieces

pipe(II) create a pipe
pipe(II) create a pipe

plot(I) make a graph
fptrap(III) floating point interpreter

seek(II) move read/write pointer
typo(I) find possible typos

pow(III) floating exponentiation
azel(VI) obtain satellite predictions

pr(I) print file
factor(I) discover prime factors of a number

date(I) print and set the date
cal(VI) print calendar

pr(I) print file
pfe(I) print floating exception

comm(I) print lines common to two files
nm(I) print name list

printf(III) formatted print
cat(I) concatenate and print

opr(I) off line print
printf(III) formatted print

nice(I) run a command at low priority
nice(II) set program priority

su(VIII) become privileged user
maze(VI) generate a maze problem

boot procedures(VIII) UNIX startup
init(VII) process control initialization

setgid(II) set process group ID
ps(I) process status

times(II) get process times
wait(II) wait for process to die

setuid(II) set process user ID
m6(VI) general purpose macro processor

exit(II) terminate process
fork(II) spawn new process

kill(I) do in an unwanted process
kill(II) send signal to a process

wait(I) await completion of process
hmul(III) high-order product

break(II) set program break
nice(II) set program priority

proof(I) compare two text files
ps(I) process status
ptx(VI) permuted index

m6(VI) general purpose macro processor
putchar(III) write character
putc(III) buffered output
qsort(III) quicker sort

compar(III) default comparison routine for qsort
qsort(III) quicker sort

22



-

rand(III) random number generator
rand(III) random number generator

getchar(III) read character
csw(II) read console switches
read(II) read from file

seek(II) move read/write pointer
pc(IV) PC-11 paper tape reader/punch

read(II) read from file
open(II) open for reading or writing

cref(I) make cross reference listing
reloc(VIII) relocate object files

strip(I) remove symbols and relocation bits
reloc(VIII) relocate object files

unlink(II) remove directory entry
rmdir(I) remove directory
strip(I) remove symbols and relocation bits

rm(I) remove (unlink) files
mv(I) move or rename a file
uniq(I) report repeated lines in a file

uniq(I) report repeated lines in a file
reset(III) execute non-local goto

da(IV) voice response unit
ttyn(III) return name of current typewriter

rew(I) rewind tape
rew(I) rewind tape
rf(IV) RF11/RS11 fixed-head disk file

rf(IV) RF11/RS11 fixed-head disk file
rk(IV) RK-11/RK03 (or RK05) disk

rk(IV) RK-11/RK03 (or RK05) disk
rk(IV) RK-11/RK03 (or RK05) disk
rmdir(I) remove directory
rm(I) remove (unlink) files
roff(I) format text

sqrt(III) square root function
compar(III) default comparison routine for qsort

rp(IV) RP-11/RP03 moving-head disk
rp(IV) RP-11/RP03 moving-head disk

nice(I) run a command at low priority
nohup(I) run a command immune to hangups

man(I) run off section of UNIX manual
azel(VI) obtain satellite predictions

grep(I) search a file for a pattern
man(I) run off section of UNIX manual

seek(II) move read/write pointer
mail(I) send mail to another user
kill(II) send signal to a process

passwd(I) set login password
stty(II) set mode of typewriter

setgid(II) set process group ID
setuid(II) set process user ID
break(II) set program break

nice(II) set program priority
tabs(VII) set tab stops

23



-

stty(I) set teletype options
date(I) print and set the date

stime(II) set time
getty(VII) set typewriter mode

setfil(III) specify Fortran file name
setgid(II) set process group ID
setuid(II) set process user ID

ascii(VII) map of ASCII character set
merge(I) merge several files

tmheader(VII) TM cover sheet
shift(I) adjust Shell arguments

sh(I) shell (command interpreter)
sh(I) shell (command interpreter)
shift(I) adjust Shell arguments

login(I) sign onto UNIX
kill(II) send signal to a process

signal(II) catch or ignore signals
signal(II) catch or ignore signals
catsim(I) phototypesetter simulator

sin(III) sine, cosine
sin(III) sine, cosine

size(I) size of an object file
size(I) size of an object file
sky(VI) obtain ephemerides
sleep(I) suspend execution for an interval
sleep(II) stop execution for interval

spline(VI) interpolate smooth curve
sno(I) Snobol interpreter

sno(I) Snobol interpreter
sort(I) sort a file

sort(I) sort a file
qsort(III) quicker sort

dpd(VII) spawn data phone daemon
fork(II) spawn new process

speak(I) word to voice translator
mknod(II) make a directory or a special file

mknod(VIII) build special file
setfil(III) specify Fortran file name

tiu(IV) Spider interface
spline(VI) interpolate smooth curve

split(I) split a file into pieces
split(I) split a file into pieces
sqrt(III) square root function

sqrt(III) square root function
boot procedures(VIII) UNIX startup

stat(II) get file status
fstat(II) get status of open file

gtty(II) get typewriter status
ps(I) process status

stat(II) get file status
stime(II) set time

sleep(II) stop execution for interval
tabs(VII) set tab stops

24



-

strip(I) remove symbols and relocation bits
stty(I) set teletype options
stty(II) set mode of typewriter

sum(I) sum file
sum(I) sum file

du(I) summarize disk usage
sync(VIII) update the super block

update(VIII) periodically update the super block
sync(II) update super-block

sleep(I) suspend execution for an interval
su(VIII) become privileged user

switch(III) switch on value
csw(II) read console switches

switch(III) switch on value
strip(I) remove symbols and relocation bits

sync(II) update super-block
sync(VIII) update the super block

vs(VII) voice synthesizer code
vs(IV) voice synthesizer interface

indir(II) indirect system call
check(VIII) file system consistency check

perror(III) system error messages
fs(V) format of file system volume

20boot(VIII) install new 11/20 system
mkfs(VIII) construct a file system

mount(II) mount file system
mount(VIII) mount file system

umount(II) dismount file system
umount(VIII) dismount file system

who(I) who is on the system
tabs(VII) set tab stops

tabs(VII) set tab stops
atan(III) arc tangent function

tp(V) DEC/mag tape formats
pc(IV) PC-11 paper tape reader/punch

rew(I) rewind tape
tc(IV) TC-11/TU56 DECtape

tc(IV) TC-11/TU56 DECtape
stty(I) set teletype options

exit(I) terminate command file
exit(II) terminate process

proof(I) compare two text files
nroff(I) format text
roff(I) format text

troff(I) format text
cubic(VI) three dimensional tic-tac-toe

cubic(VI) three dimensional tic-tac-toe
ttt(VI) tic-tac-toe
time(I) time a command

ctime(III) convert date and time to ASCII
time(I) time a command
time(II) get date and time
times(II) get process times

25



-

times(II) get process times
stime(II) set time

time(II) get date and time
tiu(IV) Spider interface

tmheader(VII) TM cover sheet
tm(IV) TM-11/TU-10 magtape interface

tmg(VI) compiler-compiler
tmheader(VII) TM cover sheet
tm(IV) TM-11/TU-10 magtape interface
tp(I) manipulate DECtape and magtape
tp(V) DEC/mag tape formats

goto(I) command transfer
speak(I) word to voice translator

tr(I) transliterate
tr(I) transliterate
troff(I) format text
tss(I) interface to MH-TSS
ttt(VI) tic-tac-toe
tty(I) get typewriter name
ttyn(III) return name of current typewriter

cmp(I) compare two files
comm(I) print lines common to two files

proof(I) compare two text files
type(I) type on 2741

greek(VII) graphics for extended ascii type-box
type(I) type on 2741

getty(VII) set typewriter mode
tty(I) get typewriter name

gtty(II) get typewriter status
kl(IV) KL-11/TTY-33 console typewriter

mesg(III) write message on typewriter
stty(II) set mode of typewriter

ttyn(III) return name of current typewriter
typo(I) find possible typos

typo(I) find possible typos
getpw(III) get name from UID

umount(II) dismount file system
umount(VIII) dismount file system
uniq(I) report repeated lines in a file

da(IV) voice response unit
man(I) run off section of UNIX manual

boot procedures(VIII) UNIX startup
login(I) sign onto UNIX

rm(I) remove (unlink) files
unlink(II) remove directory entry

kill(I) do in an unwanted process
sync(II) update super-block

sync(VIII) update the super block
update(VIII) periodically update the super block

update(VIII) periodically update the super block
du(I) summarize disk usage

getuid(II) get user identification
setuid(II) set process user ID

26



-

utmp(V) user information
wtmp(V) user login history

mail(I) send mail to another user
su(VIII) become privileged user

write(I) write to another user
utmp(V) user information

switch(III) switch on value
da(IV) voice response unit

vs(VII) voice synthesizer code
vs(IV) voice synthesizer interface

speak(I) word to voice translator
fs(V) format of file system volume

vs(IV) voice synthesizer interface
vs(VII) voice synthesizer code

vt(III) display (vt01) interface
vt(IV) 11/20 (vt01) interface

vt(III) display (vt01) interface
vt(IV) 11/20 (vt01) interface

wait(II) wait for process to die
wait(I) await completion of process
wait(II) wait for process to die
wc(I) get (English) word count

who(I) who is on the system
who(I) who is on the system

wc(I) get (English) word count
speak(I) word to voice translator

hyphen(VI) find hyphenated words
chdir(I) change working directory

chdir(II) change working directory
putchar(III) write character

mesg(III) write message on typewriter
write(II) write on a file
write(I) write to another user

write(I) write to another user
write(II) write on a file

open(II) open for reading or writing
wtmp(V) user login history
yacc(VI) yet another compiler-compiler

yacc(VI) yet another compiler-compiler

27



-

AR ( I ) 3/15/72 AR ( I )

NAME

ar − archive and library maintainer

SYNOPSIS

ar key afile name ...

DESCRIPTION

Ar maintains groups of files combined into a single archive file. Its main use is to create and update library
files as used by the loader. It can be used, though, for any similar purpose.

Ke y is one character from the set drtux, optionally concatenated with v. Afile is the archive file. The names
are constituent files in the archive file. The meanings of the key characters are:

d means delete the named files from the archive file.

r means replace the named files in the archive file. If the archive file does not exist, r will create it. If the
named files are not in the archive file, they are appended.

t prints a table of contents of the archive file. If no names are given, all files in the archive are tabled. If
names are given, only those files are tabled.

u is similar to r except that only those files that have been modified are replaced. If no names are given, all
files in the archive that have been modified will be replaced by the modified version.

x will extract the named files. If no names are given, all files in the archive are extracted. In neither case
does x alter the archive file.

v means verbose. Under the verbose option, ar gives a file-by-file description of the making of a new ar-
chive file from the old archive and the constituent files. The following abbreviations are used:

c copy
a append
d delete
r replace
x extract

FILES

/tmp/vtm? temporary

SEE ALSO

ld(I), archive(V)

BUGS

Option tv should be implemented as a table with more information.

There should be a way to specify the placement of a new file in an archive. Currently, it is placed at the
end.

Since ar has not been rewritten to deal properly with the new file system modes, extracted files have mode
666.

- 1 -



-

AS ( I ) 1/15/73 AS ( I )

NAME

as − assembler

SYNOPSIS

as [ − ] name ...

DESCRIPTION

As assembles the concatenation of the named files. If the optional first argument − is used, all undefined
symbols in the assembly are treated as global.

The output of the assembly is left on the file a.out. It is executable if no errors occurred during the assem-
bly, and if there were no unresolved external references.

FILES

/etc/as2 pass 2 of the assembler
/tmp/atm[1-4]? temporary
a.out object

SEE ALSO

ld(I), nm(I), db(I), a.out(V), ‘UNIX Assembler Manual’.

DIAGNOSTICS

When an input file cannot be read, its name followed by a question mark is typed and assembly ceases.
When syntactic or semantic errors occur, a single-character diagnostic is typed out together with the line
number and the file name in which it occurred. Errors in pass 1 cause cancellation of pass 2. The possible
errors are:

) Parentheses error
] Parentheses error
< String not terminated properly
* Indirection used illegally
. Illegal assignment to ‘.’
A Error in address
B Branch instruction is odd or too remote
E Error in expression
F Error in local (‘f’ or ‘b’) type symbol
G Garbage (unknown) character
I End of file inside an if
M Multiply defined symbol as label
O Word quantity assembled at odd address
P ‘.’ different in pass 1 and 2
R Relocation error
U Undefined symbol
X Syntax error

BUGS

Symbol table overflow is not checked. x errors can cause incorrect line numbers in following diagnostics.

- 1 -



-

BAS ( I )  1/15/73 BAS ( I )

NAME

bas − basic

SYNOPSIS

bas [ file ]

DESCRIPTION

Bas is a dialect of Basic. If a file argument is provided, the file is used for input before the console is read.
Bas accepts lines of the form:

statement
integer statement

Integer numbered statements (known as internal statements) are stored for later execution. They are stored
in sorted ascending order. Non-numbered statements are immediately executed. The result of an immedi-
ate expression statement (that does not have ‘=’ as its highest operator) is printed.

Statements have the following syntax:

expression
The expression is executed for its side effects (assignment or function call) or for printing as de-
scribed above.

done
Return to system level.

draw expression expression expression
A line is drawn on the Tektronix 611 display ‘/dev/vt0’ from the current display position to the XY
co-ordinates specified by the first two expressions. The scale is zero to one in both X and Y direc-
tions. If the third expression is zero, the line is invisible. The current display position is set to the
end point.

display list
The list of expressions and strings is concatenated and displayed (i.e. printed) on the 611 starting at
the current display position. The current display position is not changed.

erase
The 611 screen is erased.

for name = expression expression statement
for name = expression expression
next

The for statement repetitively executes a statement (first form) or a group of statements (second
form) under control of a named variable. The variable takes on the value of the first expression, then
is incremented by one on each loop, not to exceed the value of the second expression.

goto expression
The expression is evaluated, truncated to an integer and execution goes to the corresponding integer
numbered statment. If executed from immediate mode, the internal statements are compiled first.

if expression statement
The statement is executed if the expression evaluates to non-zero.

list [expression [expression]]
is used to print out the stored internal statements. If no arguments are given, all internal statements
are printed. If one argument is given, only that internal statement is listed. If two arguments are giv-
en, all internal statements inclusively between the arguments are printed.

print list
The list of expressions and strings are concatenated and printed. (A string is delimited by " charac-
ters.)

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If no expres-
sion is given, zero is returned.

- 1 -



-

BAS ( I )  1/15/73 BAS ( I )

run
The internal statements are compiled. The symbol table is re-initialized. The random number gener-
ator is reset. Control is passed to the lowest numbered internal statement.

Expressions have the following syntax:

name
A name is used to specify a variable. Names are composed of a letter followed by letters and digits.
The first four characters of a name are significant.

number
A number is used to represent a constant value. A number is written in Fortran style, and contains
digits, an optional decimal point, and possibly a scale factor consisting of an e followed by a possibly
signed exponent.

( expression )
Parentheses are used to alter normal order of evaluation.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by an operator
denoting the function. A complete list of operators is given below.

expression ( [expression [ , expression] ... ] )
Functions of an arbitrary number of arguments can be called by an expression followed by the argu-
ments in parentheses separated by commas. The expression evaluates to the line number of the entry
of the function in the internally stored statements. This causes the internal statements to be com-
piled. If the expression evaluates negative, a builtin function is called. The list of builtin functions
appears below.

name [ expression [ , expression ] ... ]
Each expression is truncated to an integer and used as a specifier for the name. The result is syntacti-
cally identical to a name. a[1,2] is the same as a[1][2]. The truncated expressions are restricted to
values between 0 and 32767.

The following is the list of operators:

=
= is the assignment operator. The left operand must be a name or an array element. The result is the
right operand. Assignment binds right to left, all other operators bind left to right.

& 
& (logical and) has result zero if either of its arguments are zero. It has result one if both its argu-
ments are non-zero.  (logical or) has result zero if both of its arguments are zero. It has result one if
either of its arguments are non-zero.

< <= > >= == <>
The relational operators (< less than, <= less than or equal, > greater than, >= greater than or equal,
== equal to, <> not equal to) return one if their arguments are in the specified relation. They return
zero otherwise. Relational operators at the same level extend as follows: a>b>c is the same as
a>b&b>c.

+ −
Add and subtract.

* /
Multiply and divide.

ˆ
Exponentiation.

The following is a list of builtin functions:

arg(i)
is the value of the i -th actual parameter on the current level of function call.

exp(x)
is the exponential function of x.

- 2 -



-

BAS ( I )  1/15/73 BAS ( I )

log(x)
is the natural logarithm of x.

sin(x)
is the sine of x (radians).

cos(x)
is the cosine of x (radians).

atn(x)
is the arctangent of x . its value is between −π/2 and π/2.

rnd( )
is a uniformly distributed random number between zero and one.

expr( )
is the only form of program input. A line is read from the input and evaluated as an expression. The
resultant value is returned.

int(x)
returns x truncated to an integer.

FILES

/tmp/btm? temporary

DIAGNOSTICS

Syntax errors cause the incorrect line to be typed with an underscore where the parse failed. All other diag-
nostics are self explanatory.

BUGS

Has been known to give core images. Needs a way to list a program onto a file.

- 3 -



-

CAT ( I )  1/15/73 CAT ( I )

NAME

cat − concatenate and print

SYNOPSIS

cat file ...

DESCRIPTION

Cat reads each file in sequence and writes it on the standard output. Thus:

cat file

is about the easiest way to print a file. Also:

cat file1 file2 >file3

is about the easiest way to concatenate files.

If no input file is given cat reads from the standard input file.

If the argument − is encountered, cat reads from the standard input file.

SEE ALSO

pr(I), cp(I)

DIAGNOSTICS

none; if a file cannot be found it is ignored.

BUGS

cat x y >x and cat x y >y cause strange results.

- 1 -



-

CATSIM ( I ) 11/1/73 CATSIM ( I )

NAME

catsim − phototypesetter simulator

SYNOPSIS

catsim

DESCRIPTION

Catsim will interpret its standard input as codes for the phototypesetter (cat). The output of catsim is output
to the display (vt).

About the only use of catsim is to save time and paper on the phototypesetter by the following command:

troff −t files | catsim

FILES

/dev/vt0

SEE ALSO

troff(I), cat(IV), vt(IV)

BUGS

Point sizes are not correct. The vt character set is restricted to one font of ASCII.

- 1 -



-

CC ( I ) 3/15/72 CC ( I )

NAME

cc − C compiler

SYNOPSIS

cc [ −c ] [ −p ] file ...

DESCRIPTION

Cc is the UNIX C compiler. It accepts three types of arguments:

Arguments whose names end with ‘.c’ are assumed to be C source programs; they are compiled, and the
object program is left on the file whose name is that of the source with ‘.o’ substituted for ‘.c’.

Other arguments (except for −c) are assumed to be either loader flag arguments, or C-compatible object
programs, typically produced by an earlier cc run, or perhaps libraries of C-compatible routines. These
programs, together with the results of any compilations specified, are loaded (in the order given) to produce
an executable program with name a.out.

The −c argument suppresses the loading phase, as does any syntax error in any of the routines being com-
piled.

If the −p flag is used, only the macro prepass is run on all files whose name ends in .c. The expanded
source is left on the file whose name is that of the source with .i substituted for .c.

FILES

file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/lib/c[01] compiler
/lib/crt0.o runtime startoff
/lib/libc.a builtin functions, etc.
/lib/liba.a system library

SEE ALSO

‘C reference manual’, cdb(I), ld(I) for other flag arguments.

BUGS

- 1 -



-

CDB ( I ) 8/15/73 CDB ( I )

NAME

cdb − C debugger

SYNOPSIS

cdb [ core [ a.out ]]

DESCRIPTION

Cdb is a debugging program for use with C programs. It is by no means completed, and this section is es-
sentially only a placeholder for the actual description.

Even the present cdb has one useful feature: the command

$

will give a stack trace of the core image of a terminated C program. The calls are listed in the order made;
the actual arguments to each routine are given in octal.

SEE ALSO

cc(I), db(I), C Reference Manual

BUGS

It has to be fixed to work with the new system.

- 1 -



-

CHDIR ( I ) 3/15/72 CHDIR ( I )

NAME

chdir − change working directory

SYNOPSIS

chdir directory

DESCRIPTION

Directory becomes the new working directory. The process must have execute permission on the directory.
The process must have execute (search) permission in directory.

Because a new process is created to execute each command, chdir would be ineffective if it were written as
a normal command. It is therefore recognized and executed by the Shell.

SEE ALSO

sh(I)

BUGS

- 1 -



-

CHMOD ( I ) 8/20/73 CHMOD ( I )

NAME

chmod − change mode

SYNOPSIS

chmod octal file ...

DESCRIPTION

The octal mode replaces the mode of each of the files. The mode is constructed from the OR of the follow-
ing modes:

4000 set user ID on execution
2000 set group ID on execution
0400 read by owner
0200 write by owner
0100 execute by owner
0070 read, write, execute by group
0007 read, write, execute by others

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO

ls(I)

BUGS

- 1 -



-

CHOWN ( I ) 3/15/72 CHOWN ( I )

NAME

chown − change owner

SYNOPSIS

chown owner file ...

DESCRIPTION

Owner becomes the new owner of the files. The owner may be either a decimal UID or a login name found
in the password file.

Only the owner of a file (or the super-user) is allowed to change the owner. Unless it is done by the super-
user or the real user ID of the new owner, the set-user-ID permission bit is turned off as the owner of a file
is changed.

FILES

/etc/passwd

BUGS

- 1 -



-

CMP ( I ) 1/15/73 CMP ( I )

NAME

cmp − compare two files

SYNOPSIS

cmp file1 file2

DESCRIPTION

The two files are compared for identical contents. Discrepancies are noted by giving the offset and the dif-
fering words, all in octal.

SEE ALSO

proof (I), comm (I)

BUGS

If the shorter of the two files is of odd length, cmp acts as if a null byte had been appended to it. The offset
is only a single-precision number.

- 1 -



-

COMM ( I ) 8/21/73 COMM ( I )

NAME

comm − print lines common to two files

SYNOPSIS

comm [ − [ 123 ] ] file1 file2 [ file3 ]

DESCRIPTION

Comm reads file1 and file2, which should be in sort, and produces a three column output: lines only in file1;
lines only in file2; and lines in both files.

If file3 is given, the output will be placed there; otherwise it will be written on the standard output.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm −12 prints only the lines com-
mon to the two files; comm −23 prints only lines in the first file but not in the second; comm −123 is a no-
op.

SEE ALSO

uniq( I ), proof( I ), cmp( I )

BUGS

- 1 -



-

CP ( I ) 1/24/73 CP ( I )

NAME

cp − copy

SYNOPSIS

cp file1 file2

DESCRIPTION

The first file is copied onto the second. The mode and owner of the target file are preserved if it already ex-
isted; the mode of the source file is used otherwise.

If file2 is a directory, then the target file is a file in that directory with the file-name of file1.

SEE ALSO

cat(I), pr(I), mv(I)

BUGS

Copying a file onto itself destroys its contents.

- 1 -



-

CREF ( I ) 2/5/73 CREF ( I )

NAME

cref − make cross reference listing

SYNOPSIS

cref [ −acilostux123 ] name ...

DESCRIPTION

Cref makes a cross reference listing of program files in assembler or C format. The files named as argu-
ments in the command line are searched for symbols in the appropriate syntax.

The output report is in four columns:

(1) (2) (3) (4)
symbol file see text as it appears in file

below

Cref uses either an ignore file or an only file. If the −i option is given, it will take the next available argu-
ment to be an ignore file name; if the −o option is given, the next available argument will be taken as an on-
ly file name. Ignore and only files should be lists of symbols separated by new lines. If an ignore file is
given, all the symbols in that file will be ignored in columns (1) and (3) of the output. If an only file is giv-
en, only symbols appearing in that file will appear in column (1). Only one of the options −i or −o may be
used. The default setting is −i. Assembler predefined symbols or C keywords are ignored.

The −s option causes current symbols to be put in column 3. In the assembler, the current symbol is the
most recent name symbol; in C, the current function name. The −l option causes the line number within the
file to be put in column 3.

The −t option causes the next available argument to be used as the name of the intermediate temporary file
(instead of /tmp/crt??). The file is created and is not removed at the end of the process.

Options:

a assembler format (default)
c C format input
i use ignore file (see above)
l put line number in col. 3 (instead of current symbol)
o use only file (see above)
s current symbol in col. 3 (default)
t user supplied temoprary file
u print only symbols that occur exactly once
x print only C external symbols
1 sort output on column 1 (default)
2 sort output on column 2
3 sort output on column 3

FILES

/tmp/crt?? temporaries
/usr/lib/aign default assembler ignore file
/usr/lib/cign default C ignore file
/usr/bin/crpost post processor
/usr/bin/upost post processor for −u option
/bin/sort used to sort temporaries

SEE ALSO

as(I), cc(I), sort(I)

BUGS

- 1 -



-

DATE ( I ) 11/1/73 DATE ( I )

NAME

date − print and set the date

SYNOPSIS

date [ mmddhhmm[yy] ]

DESCRIPTION

If no argument is given, the current date is printed to the second. If an argument is given, the current date is
set. The first mm is the month number; dd is the day number in the month; hh is the hour number (24 hour
system); the second mm is the minute number; yy is the last 2 digits of the year number and is optional. For
example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The system oper-
ates in GMT. Date takes care of the conversion to and from local standard and daylight time.

BUGS

- 1 -



-

DB ( I ) 8/20/73 DB ( I )

NAME

db − debug

SYNOPSIS

db [ core [ namelist ] ] [ − ]

DESCRIPTION

Unlike many debugging packages (including DEC’s ODT, on which db is loosely based), db is not loaded
as part of the core image which it is used to examine; instead it examines files. Typically, the file will be ei-
ther a core image produced after a fault or the binary output of the assembler. Core is the file being de-
bugged; if omitted core is assumed. Namelist is a file containing a symbol table. If it is omitted, the sym-
bol table is obtained from the file being debugged, or if not there from a.out. If no appropriate name list
file can be found, db can still be used but some of its symbolic facilities become unavailable.

For the meaning of the optional third argument, see the last paragraph below.

The format for most db requests is an address followed by a one character command. Addresses are ex-
pressions built up as follows:

1. A name has the value assigned to it when the input file was assembled. It may be relocatable or not
depending on the use of the name during the assembly.

2. An octal number is an absolute quantity with the appropriate value.

3. A decimal number immediately followed by ‘.’ is an absolute quantity with the appropriate value.

4. An octal number immediately followed by r is a relocatable quantity with the appropriate value.

5. The symbol . indicates the current pointer of db. The current pointer is set by many db requests.

6. A * before an expression forms an expression whose value is the number in the word addressed by the
first expression. A * alone is equivalent to ‘*.’.

7. Expressions separated by + or blank are expressions with value equal to the sum of the components.
At most one of the components may be relocatable.

8. Expressions separated by − form an expression with value equal to the difference to the components.
If the right component is relocatable, the left component must be relocatable.

9. Expressions are evaluated left to right.

Names for registers are built in:

r0 ... r5
sp
pc
fr0 ... fr5

These may be examined. Their values are deduced from the contents of the stack in a core image file.
They are meaningless in a file that is not a core image.

If no address is given for a command, the current address (also specified by ‘‘.’’) is assumed. In general,
‘‘.’’ points to the last word or byte printed by db.

There are db commands for examining locations interpreted as numbers, machine instructions, ASCII char-
acters, and addresses. For numbers and characters, either bytes or words may be examined. The following
commands are used to examine the specified file.

/ The addressed word is printed in octal.

\ The addressed byte is printed in octal.

" The addressed word is printed as two ASCII characters.

‘ The addressed word is printed in decimal.

? The addressed word is interpreted as a machine instruction and a symbolic form of the instruction, in-
cluding symbolic addresses, is printed. Often, the result will appear exactly as it was written in the

- 1 -



-

DB ( I ) 8/20/73 DB ( I )

source program.

& The addressed word is interpreted as a symbolic address and is printed as the name of the symbol
whose value is closest to the addressed word, possibly followed by a signed offset.

<nl>(i. e., the character ‘‘new line’’) This command advances the current location counter ‘‘.’’ and prints
the resulting location in the mode last specified by one of the above requests.

ˆ This character decrements ‘‘.’’ and prints the resulting location in the mode last selected one of the
above requests. It is a converse to <nl>.

% Exit.

Odd addresses to word-oriented commands are rounded down. The incrementing and decrementing of ‘‘.’’
done by the <nl> and ˆ requests is by one or two depending on whether the last command was word or byte
oriented.

The address portion of any of the above commands may be followed by a comma and then by an expres-
sion. In this case that number of sequential words or bytes specified by the expression is printed. ‘‘.’’ is ad-
vanced so that it points at the last thing printed.

There are two commands to interpret the value of expressions.

= When preceded by an expression, the value of the expression is typed in octal. When not preceded by
an expression, the value of ‘‘.’’ is indicated. This command does not change the value of ‘‘.’’.

: An attempt is made to print the given expression as a symbolic address. If the expression is relocat-
able, that symbol is found whose value is nearest that of the expression, and the symbol is typed, fol-
lowed by a sign and the appropriate offset. If the value of the expression is absolute, a symbol with
exactly the indicated value is sought and printed if found; if no matching symbol is discovered, the oc-
tal value of the expression is given.

The following command may be used to patch the file being debugged.

! This command must be preceded by an expression. The value of the expression is stored at the loca-
tion addressed by the current value of ‘‘.’’. The opcodes do not appear in the symbol table, so the user
must assemble them by hand.

The following command is used after a fault has caused a core image file to be produced.

$ causes the fault type and the contents of the general registers and several other registers to be printed
both in octal and symbolic format. The values are as they were at the time of the fault.

For some purposes, it is important to know how addresses typed by the user correspond with locations in
the file being debugged. The mapping algorithm employed by db is non-trivial for two reasons: First, in an
a.out file, there is a 20(8) byte header which will not appear when the file is loaded into core for execution.
Therefore, apparent location 0 should correspond with actual file offset 20. Second, addresses in core im-
ages do not correspond with the addresses used by the program because in a core image there is a 512-byte
header containing the system’s per-process data for the dumped process, and also because the stack is
stored contiguously with the text and data part of the core image rather than at the highest possible loca-
tions. Db obeys the following rules:

If exactly one argument is given, and if it appears to be an a.out file, the 20-byte header is skipped during
addressing, i.e., 20 is added to all addresses typed. As a consequence, the header can be examined begin-
ning at location −20.

If exactly one argument is given and if the file does not appear to be an a.out file, no mapping is done.

If zero or two arguments are given, the mapping appropriate to a core image file is employed. This means
that locations above the program break and below the stack effectively do not exist (and are not, in fact,
recorded in the core file). Locations above the user’s stack pointer are mapped, in looking at the core file,
to the place where they are really stored. The per-process data kept by the system, which is stored in the
first 512(10) bytes of the core file, cannot currently be examined (except by $).

If one wants to examine a file which has an associated name list, but is not a core image file, the last argu-
ment ‘‘−’’ can be used (actually the only purpose of the last argument is to make the number of arguments
not equal to two). This feature is used most frequently in examining the memory file /dev/mem.

- 2 -



-

DB ( I ) 8/20/73 DB ( I )

SEE ALSO

as(I), core(V), a.out(V), od(I)

DIAGNOSTICS

‘‘File not found’’ if the first argument cannot be read; otherwise ‘‘?’’.

BUGS

There should be some way to examine the registers and other per-process data in a core image; also there
should be some way of specifying double-precision addresses. It does not know yet about shared text seg-
ments.

- 3 -



-

DC ( I ) 1/15/73 DC ( I )

NAME

dc − desk calculator

SYNOPSIS

dc [ file ]

DESCRIPTION

Dc is an arbitrary precision integer arithmetic package. The overall structure of dc is a stacking (reverse
Polish) calculator. The following constructions are recognized by the calculator:

number The value of the number is pushed on the stack. A number is an unbroken string of the digits
0-9. It may be preceded by an underscore to input a negative number.

+ − * / % ˆ  The top two values on the stack are added (+), subtracted (−), multiplied (*), divided (/), re-
maindered (%), or exponentiated (ˆ). The two entries are popped off the stack; the result is
pushed on the stack in their place.

sx The top of the stack is popped and stored into a register named x, where x may be any charac-
ter.

lx The value in register x is pushed on the stack. The register x is not altered. All registers start
with zero value.

d The top value on the stack is pushed on the stack. Thus the top value is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the nesting level is popped by two.

x treats the top element of the stack as a character string and executes it as a string of dc com-
mands.

[ ... ] puts the bracketed ascii string onto the top of the stack.

<x =x >x The top two elements of the stack are popped and compared. Register x is executed if they
obey the stated relation.

v replaces the top element on the stack by its square root.

! interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for further input.

o The top value on the stack is popped and used as the number radix for further output.

z The stack level is pushed onto the stack.

? A line of input is taken from the input source (usually the console) and executed.

new-line ignored except as the name of a register or to end the response to a ?.

space ignored except as the name of a register or to terminate a number.

If a file name is given, input is taken from that file until end-of-file, then input is taken from the console.
An example which prints the first ten values of n! is

[la1+dsa*pla10>x]sx
0sa1
lxx

FILES

/etc/msh to implement ‘!’

DIAGNOSTICS

(x) ? for unrecognized character x.
(x) ? for not enough elements on the stack to do what was asked by command x.

- 1 -



-

DC ( I ) 1/15/73 DC ( I )

‘Out of space’ when the free list is exhausted (too many digits).
‘Out of headers’ for too many numbers being kept around.
‘Out of pushdown’ for too many items on the stack.
‘Nesting Depth’ for too many lev els of nested execution.

BUGS

- 2 -



-

DSW ( I ) 3/15/72 DSW ( I )

NAME

dsw − delete interactively

SYNOPSIS

dsw [ directory ]

DESCRIPTION

For each file in the given directory (‘.’ if not specified) dsw types its name. If y is typed, the file is deleted;
if x, dsw exits; if new-line, the file is not deleted; if anything else, dsw asks again.

SEE ALSO

rm(I)

BUGS

The name dsw is a carryover from the ancient past. Its etymology is amusing.

- 1 -



-

DU ( I ) 1/20/73 DU ( I )

NAME

du − summarize disk usage

SYNOPSIS

du [ −s ] [ −a ] [ name ... ]

DESCRIPTION

Du gives the number of blocks contained in all files and (recursively) directories within each specified di-
rectory or file name. If name is missing, ‘.’ is used.

The optional argument −s causes only the grand total to be given. The optional argument −a causes an en-
try to be generated for each file. Absence of either causes an entry to be generated for each directory only.

A file which has two links to it is only counted once.

BUGS

Non-directories given as arguments (not under −a option) are not listed.

Removable file systems do not work correctly since i-numbers may be repeated while the corresponding
files are distinct. Du should maintain an i-number list per root directory encountered.

- 1 -



-

ECHO ( I ) 3/15/72 ECHO ( I )

NAME

echo − echo arguments

SYNOPSIS

echo [ arg ... ]

DESCRIPTION

Echo writes all its arguments in order as a line on the standard output file. It is mainly useful for producing
diagnostics in command files.

BUGS

Echo with no arguments does not print a blank line.

- 1 -



-

ED ( I ) 1/15/73 ED ( I )

NAME

ed − editor

SYNOPSIS

ed [ − ] [ name ]

DESCRIPTION

Ed is the standard text editor.

If a name argument is given, ed simulates an e command (see below) on the named file; that is to say, the
file is read into ed’s buffer so that it can be edited. The optional − simulates an os command (see below)
which suppresses the printing of characters counts by e, r, and w commands.

Ed operates on a copy of any file it is editing; changes made in the copy hav e no effect on the file until a w
(write) command is given. The copy of the text being edited resides in a temporary file called the buffer.
There is only one buffer.

Commands to ed have a simple and regular structure: zero or more addresses followed by a single character
command, possibly followed by parameters to the command. These addresses specify one or more lines in
the buffer. Every command which requires addresses has default addresses, so that the addresses can often
be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text. This text
is placed in the appropriate place in the buffer. While ed is accepting text, it is said to be in input mode. In
this mode, no commands are recognized; all input is merely collected. Input mode is left by typing a period
‘.’ alone at the beginning of a line.

Ed supports a limited form of regular expression notation. A regular expression is an expression which
specifies a set of strings of characters. A member of this set of strings is said to be matched by the regular
expression. The regular expressions allowed by ed are constructed as follows:

1. An ordinary character (not one of those discussed below) is a regular expression and matches that
character.

2. A circumflex ‘ˆ’ at the beginning of a regular expression matches the null character at the beginning
of a line.

3. A currency symbol ‘$’ at the end of a regular expression matches the null character at the end of a
line.

4. A period ‘.’ matches any character but a new-line character.

5. A regular expression followed by an asterisk ‘*’ matches any number of adjacent occurrences (in-
cluding zero) of the regular expression it follows.

6. A string of characters enclosed in square brackets ‘[ ]’ matches any character in the string but no
others. If, however, the first character of the string is a circumflex ‘ˆ’ the regular expression matches
any character but new-line and the characters in the string.

7. The concatenation of regular expressions is a regular expression which matches the concatenation of
the strings matched by the components of the regular expression.

8. The null regular expression standing alone is equivalent to the last regular expression encountered.

Regular expressions are used in addresses to specify lines and in one command (see s below) to specify a
portion of a line which is to be replaced.

If it is desired to use one of the regular expression metacharacters as an ordinary character, that character
may be preceded by ‘\’. This also applies to the character bounding the regular expression (often ‘/’) and
to ‘\’ itself.

Addresses are constructed as follows. To understand addressing in ed it is necessary to know that at any
time there is a current line. Generally speaking, the current line is the last line affected by a command;
however, the exact effect on the current line by each command is discussed under the description of the
command.

- 1 -



-

ED ( I ) 1/15/73 ED ( I )

1. The character ‘.’ addresses the current line.

2. The character ‘ˆ’ addresses the line immediately before the current line.

3. The character ‘$’ addresses the last line of the buffer.

4. A decimal number n addresses the n-th line of the buffer.

5. ‘´x’ addresses the line associated (marked) with the mark name character x which must be a print-
able character. Lines are marked with the k command described below.

6. A regular expression enclosed in slashes ‘/’ addresses the first line found by searching toward the
end of the buffer and stopping at the first line containing a string matching the regular expression. If
necessary the search wraps around to the beginning of the buffer.

7. A regular expression enclosed in queries ‘?’ addresses the first line found by searching toward the
beginning of the buffer and stopping at the first line found containing a string matching the regular
expression. If necessary the search wraps around to the end of the buffer.

8. An address followed by a plus sign ‘+’ or a minus sign ‘−’ followed by a decimal number specifies
that address plus (resp. minus) the indicated number of lines. The plus sign may be omitted.

Commands may require zero, one, or two addresses. Commands which require no addresses regard the
presence of an address as an error. Commands which accept one or two addresses assume default addresses
when insufficient are given. If more addresses are given than such a command requires, the last one or two
(depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ‘,’. They may also be separated by a semi-
colon ‘;’. In this case the current line ‘.’ is set to the previous address before the next address is interpreted.
This feature can be used to determine the starting line for forward and backward searches (‘/’, ‘?’) . The
second address of any two-address sequence must correspond to a line following the line corresponding to
the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The parentheses are
not part of the address, but are used to show that the given addresses are the default.

As mentioned, it is generally illegal for more than one command to appear on a line. However, any com-
mand may be suffixed by ‘p’ (for ‘print’) . In that case, the current line is printed after the command is
complete.

( . ) a
<text>
.

The append command reads the given text and appends it after the addressed line. ‘.’ is left on
the last line input, if there were any, otherwise at the addressed line. Address ‘0’ is legal for
this command; text is placed at the beginning of the buffer.

( . , . ) c
<text>
.

The change command deletes the addressed lines, then accepts input text which replaces these
lines. ‘.’ is left at the last line input; if there were none, it is left at the first line not changed.

( . , . ) d
The delete command deletes the addressed lines from the buffer. The line originally after the
last line deleted becomes the current line; if the lines deleted were originally at the end, the
new last line becomes the current line.

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the named
file to be read in. ‘.’ is set to the last line of the buffer. The number of characters read is typed.
‘filename’ is remembered for possible use as a default file name in a subsequent r or w com-
mand.

f filename
The filename command prints the currently remembered file name. If ‘filename’ is given, the

- 2 -



-

ED ( I ) 1/15/73 ED ( I )

currently remembered file name is changed to ‘filename’.

(1,$) g/regular expression/command list
In the global command, the first step is to mark every line which matches the given regular ex-
pression. Then for every such line, the given command list is executed with ‘.’ initially set to
that line. A single command or the first of multiple commands appears on the same line with
the global command. All lines of a multi-line list except the last line must be ended with ‘\’.
A, i, and c commands and associated input are permitted; the ‘.’ terminating input mode may
be omitted if it would be on the last line of the command list. The (global) commands, g, and
v, are not permitted in the command list.

( . ) i
<text>
This command inserts the given text before the addressed line. ‘.’ is left at the last line input; if there

were none, at the addressed line. This command differs from the a command only in the place-
ment of the text.

( . ) kx
The mark command associates or marks the addressed line with the single character mark
name x. The ten most recent mark names are remembered. The current mark names may be
printed with the n command.

( . , . ) ma
The move command will reposition the addressed lines after the line addressed by a. The last
of the moved lines becomes the current line.

n
The n command will print the current mark names.

os
ov

After os character counts printed by e, r, and w are suppressed. Ov turns them back on.

( . , . ) p
The print command prints the addressed lines. ‘.’ is left at the last line printed. The p com-
mand may be placed on the same line after any command.

q
The quit command causes ed to exit. No automatic write of a file is done.

($) r filename
The read command reads in the given file after the addressed line. If no file name is given, the
remembered file name, if any, is used (see e and f commands) . The remembered file name is
not changed unless ‘filename’ is the very first file name mentioned. Address ‘0’ is legal for r
and causes the file to be read at the beginning of the buffer. If the read is successful, the num-
ber of characters read is typed. ‘.’ is left at the last line read in from the file.

( . , . ) s/regular expression/replacement/ or,
( . , . ) s/regular expression/replacement/g

The substitute command searches each addressed line for an occurrence of the specified regular
expression. On each line in which a match is found, all matched strings are replaced by the re-
placement specified, if the global replacement indicator ‘g’ appears after the command. If the
global indicator does not appear, only the first occurrence of the matched string is replaced. It
is an error for the substitution to fail on all addressed lines. Any character other than space or
new-line may be used instead of ‘/’ to delimit the regular expression and the replacement. ‘.’ is
left at the last line substituted.

An ampersand ‘&’ appearing in the replacement is replaced by the regular expression that was
matched. The special meaning of ‘&’ in this context may be suppressed by preceding it by ‘\’.

(1,$) v/regular expression/command list
This command is the same as the global command except that the command list is executed
with ‘.’ initially set to every line except those matching the regular expression.

- 3 -



-

ED ( I ) 1/15/73 ED ( I )

(1,$) w filename
The write command writes the addressed lines onto the given file. If the file does not exist, it is
created mode 666 (readable and writeable by everyone) . The remembered file name is not
changed unless ‘filename’ is the very first file name mentioned. If no file name is given, the re-
membered file name, if any, is used (see e and f commands) . ‘.’ is unchanged. If the com-
mand is successful, the number of characters written is typed.

($) =
The line number of the addressed line is typed. ‘.’ is unchanged by this command.

!UNIX command
The remainder of the line after the ‘!’ is sent to UNIX to be interpreted as a command. ‘.’ is
unchanged. The entire shell syntax is not recognized. See msh(VII) for the restrictions.

( .+1 ) <newline>
An address alone on a line causes the addressed line to be printed. A blank line alone is equiv-
alent to ‘.+1p’; it is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sent, ed will print a ‘?’ and return to its command level.

If invoked with the command name ‘−’, (see init(VII) ) ed will sign on with the message ‘Editing system’
and print ‘*’ as the command level prompt character.

Ed has size limitations on the maximum number of lines that can be edited, on the maximum number of
characters in a line, in a global’s command list, in a remembered file name, and in the size of the temporary
file. The current sizes are: 4000 lines per file, 512 characters per line, 256 characters per global command
list, 64 characters per file name, and 64K characters in the temporary file (see BUGS) .

FILES

/tmp/etm?, temporary
/etc/msh, to implement the ‘!’ command.

DIAGNOSTICS

‘?’ for errors in commands; ‘TMP’ for temporary file overflow.

BUGS

The temporary file can grow to no more than 64K bytes.

- 4 -



-

EXIT ( I ) 3/15/72 EXIT ( I )

NAME

exit − terminate command file

SYNOPSIS

exit

DESCRIPTION

Exit performs a seek to the end of its standard input file. Thus, if it is invoked inside a file of commands,
upon return from exit the shell will discover an end-of-file and terminate.

SEE ALSO

if(I), goto(I), sh(I)

BUGS

- 1 -



-

FC ( I ) 8/20/73 FC ( I )

NAME

fc − fortran compiler

SYNOPSIS

fc [ −c ] sfile1.f ... ofile1 ...

DESCRIPTION

Fc is the UNIX Fortran compiler. It accepts three types of arguments:

Arguments whose names end with ‘.f’ are assumed to be Fortran source program units; they are compiled,
and the object program is left on the file sfile1.o (i.e. the file whose name is that of the source with ‘.o’ sub-
stituted for ‘.f’).

Other arguments (except for −c) are assumed to be either loader flags, or object programs, typically pro-
duced by an earlier fc run, or perhaps libraries of Fortran-compatible routines. These programs, together
with the results of any compilations specified, are loaded (in the order given) to produce an executable pro-
gram with name a.out.

The −c argument suppresses the loading phase, as does any syntax error in any of the routines being com-
piled.

The following is a list of differences between fc and ANSI standard Fortran (also see the BUGS section):

1. Arbitrary combination of types is allowed in expressions. Not all combinations are expected to be
supported at runtime. All of the normal conversions involving integer, real, double precision and com-
plex are allowed.

2. DEC’s implicit statement is recognized. E.g.: implicit integer /i−n/

3. The types doublecomplex, logical*1, integer*1, integer*2 and real*8 (double precision) are supported.

4. & as the first character of a line signals a continuation card.

5. c as the first character of a line signals a comment.

6. All keywords are recognized in lower case.

7. The notion of ‘column 7’ is not implemented.

8. G-format input is free form− leading blanks are ignored, the first blank after the start of the number
terminates the field.

9. A comma in any numeric or logical input field terminates the field.

10. There is no carriage control on output.

11. A sequence of n characters in double quotes ‘"’ is equivalent to n h followed by those characters.

12. In data statements, a hollerith string may initialize an array or a sequence of array elements.

13. The number of storage units requested by a binary read must be identical to the number contained in
the record being read.

In I/O statements, only unit numbers 0-19 are supported. Unit number n refers to file fortnn; (e.g. unit 9 is
file ‘fort09’). For input, the file must exist; for output, it will be created. Unit 5 is permanently associated
with the standard input file; unit 6 with the standard output file. Also see setfil (III) for a way to associate
unit numbers with named files.

FILES

file.f input file
a.out loaded output
f.tmp[123] temporary (deleted)
/usr/fort/fc1 compiler proper
/lib/fr0.o runtime startoff
/lib/filib.a interpreter library
/lib/libf.a builtin functions, etc.
/lib/liba.a system library

- 1 -



-

FC ( I ) 8/20/73 FC ( I )

SEE ALSO

ANSI standard, ld(I) for loader flags
Also see the writeups on the precious few non-standard Fortran subroutines, ierror and setfil (III)

DIAGNOSTICS

Compile-time diagnostics are given in English, accompanied if possible with the offending line number and
source line with an underscore where the error occurred. Runtime diagnostics are given by number as fol-
lows:

1 inv alid log argument
2 bad arg count to amod
3 bad arg count to atan2
4 excessive argument to cabs
5 exp too large in cexp
6 bad arg count to cmplx
7 bad arg count to dim
8 excessive argument to exp
9 bad arg count to idim
10 bad arg count to isign
11 bad arg count to mod
12 bad arg count to sign
13 illegal argument to sqrt
14 assigned/computed goto out of range
15 subscript out of range
16 real**real overflow
17 (negative real)**real

100 illegal I/O unit number
101 inconsistent use of I/O unit
102 cannot create output file
103 cannot open input file
104 EOF on input file
105 illegal character in format
106 format does not begin with (
107 no conversion in format but non-empty list
108 excessive parenthesis depth in format
109 illegal format specification
110 illegal character in input field
111 end of format in hollerith specification
999 unimplemented input conversion
Any of these errors can be caught by the program; see ierror (III).

BUGS

The following is a list of those features not yet implemented:

arithmetic statement functions
scale factors on input

Backspace statement.

- 2 -



-

FED ( I ) 1/15/73 FED ( I )

NAME

fed − edit associative memory for form letter

SYNOPSIS

fed

DESCRIPTION

Fed is used to edit a form letter associative memory file, form.m, which consists of named strings. Com-
mands consist of single letters followed by a list of string names separated by a single space and ending
with a new line. The conventions of the Shell with respect to ‘*’ and ‘?’ hold for all commands but m. The
commands are:

e name ...
Fed writes the string whose name is name onto a temporary file and executes ed. On exit from the ed
the temporary file is copied back into the associative memory. Each argument is operated on separately.
Be sure to give an ed w command (without a filename) to rewrite fed’s temporary file before quitting out
of ed.

d [ name ... ]
deletes a string and its name from the memory. When called with no arguments d operates in a verbose
mode typing each string name and deleting only if a y is typed. A q response returns to fed’s command
level. Any other response does nothing.

m name1 name2 ...
(move) changes the name of name1 to name2 and removes previous string name2 if one exists. Several
pairs of arguments may be given. Literal strings are expected for the names.

n [ name ... ]
(names) lists the string names in the memory. If called with the optional arguments, it just lists those
requested.

p name ...
prints the contents of the strings with names given by the arguments.

q
returns to the system.

c [ p ] [ f ]
checks the associative memory file for consistency and reports the number of free headers and blocks.
The optional arguments do the following:

p causes any unaccounted-for string to be printed.

f fixes broken memories by adding unaccounted-for headers to free storage and removing references
to released headers from associative memory.

FILES

/tmp/ftmp? temporary
form.m associative memory

SEE ALSO

form(I), ed(I), sh(I)

WARNING

It is legal but unwise to have string names with blanks, ‘:’ or ‘?’ in them.

BUGS

- 1 -



-

FILE ( I ) 11/1/73 FILE ( I )

NAME

file − determine format of file

SYNOPSIS

file files

DESCRIPTION

File will examine each of its arguments and give a guess as to the contents of the file. It is the only pro-
gram that will give device numbers of special files.

BUGS

If the file is not instantly recognized, its type is given as ‘unknown’. There should be some heuristic to rec-
ognize source file ‘signatures’ in each of the standard languages.

- 1 -



-

FORM ( I ) 6/15/72 FORM ( I )

NAME

form − form letter generator

SYNOPSIS

form proto arg ...

DESCRIPTION

Form generates a form letter from a prototype letter, an associative memory, arguments and in a special
case, the current date.

If form is invoked with the proto argument x, the associative memory is searched for an entry with name x
and the contents filed under that name are used as the prototype. If the search fails, the message ‘[x]:’ is
typed on the console and whatever text is typed in from the console, terminated by two new lines, is used as
the prototype. If the prototype argument is missing, ‘{letter}’ is assumed.

Basically, form is a copy process from the prototype to the output file. If an element of the form [n] (where
n is a digit from 1 to 9) is encountered, the n-th argument is inserted in its place, and that argument is then
rescanned. If [0] is encountered, the current date is inserted. If the desired argument has not been given, a
message of the form ‘[n]:’ is typed. The response typed in then is used for that argument.

If an element of the form [name] or {name} is encountered, the name is looked up in the associative memo-
ry. If it is found, the contents of the memory under this name replaces the original element (again res-
canned). If the name is not found, a message of the form ‘[name]:’ is typed. The response typed in is used
for that element. The response is entered in the memory under the name if the name is enclosed in [ ]. The
response is not entered in the memory but is remembered for the duration of the letter if the name is en-
closed in {}.

In both of the above cases, the response is typed in by entering arbitrary text terminated by two new lines.
Only the first of the two new lines is passed with the text.

If one of the special characters [{]}\ is preceded by a \, it loses its special character.

If a file named ‘forma’ already exists in the user’s directory, ‘formb’ is used as the output file and so forth
to ‘formz’.

The file ‘form.m’ is created if none exists. Because form.m is operated on by the disc allocator, it should
only be changed by using fed, the form letter editor, or form.

FILES

form.m associative memory
form? output file (read only)

SEE ALSO

fed(I), type(I), roff(I)

BUGS

An unbalanced ] or } acts as an end of file but may add a few strange entries to the associative memory.

- 1 -



-

GOTO ( I ) 3/15/72 GOTO ( I )

NAME

goto − command transfer

SYNOPSIS

goto label

DESCRIPTION

Goto is only allowed when the Shell is taking commands from a file. The file is searched from the begin-
ning for a line beginning with ‘:’ followed by one or more spaces followed by the label. If such a line is
found, the goto command returns. Since the read pointer in the command file points to the line after the la-
bel, the effect is to cause the Shell to transfer to the labelled line.

‘:’ is a do-nothing command that is ignored by the Shell and only serves to place a label.

SEE ALSO

sh(I)

BUGS

- 1 -



-

GREP ( I ) 3/3/73 GREP ( I )

NAME

grep − search a file for a pattern

SYNOPSIS

grep [ −v ] [ −l ] [ −n ] expression [input] [output]

DESCRIPTION

Grep will search the input file (standard input default) for each line containing the regular expression. Nor-
mally, each line found is printed on the output file (standard output default). If the −v flag is used, all lines
but those matching are printed. If the −l flag is used, each line printed is preceded by its line number. If the
−n flag is used, no lines are printed, but the number of lines that would normally have been printed is re-
ported. If interrupt is hit, the number of lines searched is printed.

For a complete description of the regular expression, see ed(I). Care should be taken when using the char-
acters $ * [ ˆ | ( ) and \ in the regular expression as they are also meaningful to the shell. (Precede them by
\)

SEE ALSO

ed(I), sh(I)

BUGS

Lines are limited to 512 characters; longer lines are truncated.

- 1 -



-

IF ( I ) 3/15/72 IF ( I )

NAME

if − conditional command

SYNOPSIS

if expr command [ arg ... ]

DESCRIPTION

If evaluates the expression expr, and if its value is true, executes the given command with the given argu-
ments.

The following primitives are used to construct the expr:

−r file true if the file exists and is readable.

−w file true if the file exists and is writable

s1 = s2 true if the strings s1 and s2 are equal.

s1 != s2 true if the strings s1 and s2 are not equal.

These primaries may be combined with the following operators:

! unary negation operator

−a binary and operator

−o binary or operator

( expr ) parentheses for grouping.

−a has higher precedence than −o. Notice that all the operators and flags are separate arguments to if and
hence must be surrounded by spaces. Notice also that parentheses are meaningful to the Shell and must be
escaped.

SEE ALSO

sh(I)

BUGS

- 1 -



-

KILL ( I ) 8/18/73 KILL ( I )

NAME

kill − do in an unwanted process

SYNOPSIS

kill processid ...

DESCRIPTION

Kills the specified processes. The processid of each asynchronous process started with ‘&’ is reported by
the shell. Processid’s can also be found by using ps (I).

The killed process must have been started from the same typewriter as the current user, unless he is the su-
peruser.

SEE ALSO

ps(I), sh(I)

BUGS

Clearly people should only be allowed to kill processes owned by them, and having the same typewriter is
neither necessary nor sufficient.

- 1 -



-

LD ( I ) 8/16/73 LD ( I )

NAME

ld − link editor

SYNOPSIS

ld [ −sulxrnd ] name ...

DESCRIPTION

Ld combines several object programs into one; resolves external references; and searches libraries. In the
simplest case the names of several object programs are given, and d combines them, producing an object
module which can be either executed or become the input for a further ld run. (In the latter case, the −r op-
tion must be given to preserve the relocation bits.) The output of ld is left on a.out. This file is executable
only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is the begin-
ning of the first routine.

If any argument is a library, it is searched exactly once at the point it is encountered in the argument list.
Only those routines defining an unresolved external reference are loaded. If a routine from a library refer-
ences another routine in the library, the referenced routine must appear after the referencing routine in the
library. Thus the order of programs within libraries is important.

Ld understands several flag arguments which are written preceded by a ‘−’. Except for −l, they should ap-
pear before the file names.

−s ‘squash’ the output, that is, remove the symbol table and relocation bits to save space (but impair the
usefulness of the debugger). This information can also be removed by strip.

−u take the following argument as a symbol and enter it as undefined in the symbol table. This is useful
for loading wholly from a library, since initially the symbol table is empty and an unresolved reference
is needed to force the loading of the first routine.

−l This option is an abbreviation for a library name. −l alone stands for ‘/lib/liba.a’, which is the stan-
dard system library for assembly language programs. −lx stands for ‘/lib/libx.a’ where x is any charac-
ter. There are libraries for Fortran (x = f), and C (x = c). A library is searched when its name is en-
countered, so the placement of a −l is significant.

−x do not preserve local (non-.globl) symbols in the output symbol table; only enter external symbols.
This option saves some space in the output file.

−r generate relocation bits in the output file so that it can be the subject of another ld run. This flag also
prevents final definitions from being given to common symbols.

−d force definition of common storage even if the −r flag is present (used for reloc (VIII)).

−n Arrange that when the output file is executed, the text portion will be read-only and shared among all
users executing the file. This involves moving the data areas up the the first possible 4K word bound-
ary following the end of the text.

FILES

/lib/lib?.a libraries
a.out output file

SEE ALSO

as(I), ar(I)

BUGS

- 1 -



-

LN ( I ) 3/15/72 LN ( I )

NAME

ln − make a link

SYNOPSIS

ln name1 [ name2 ]

DESCRIPTION

A link is a directory entry referring to a file; the same file (together with its size, all its protection informa-
tion, etc) may have sev eral links to it. There is no way to distinguish a link to a file from its original direc-
tory entry; any changes in the file are effective independently of the name by which the file is known.

Ln creates a link to an existing file name1. If name2 is given, the link has that name; otherwise it is placed
in the current directory and its name is the last component of name1.

It is forbidden to link to a directory or to link across file systems.

SEE ALSO

rm(I)

BUGS

There is nothing particularly wrong with ln, but tp doesn’t understand about links and makes one copy for
each name by which a file is known; thus if the tape is extracted several copies are restored and the infor-
mation that links were involved is lost.

- 1 -



-

LOGIN ( I ) 3/15/72 LOGIN ( I )

NAME

login − sign onto UNIX

SYNOPSIS

login [ username ]

DESCRIPTION

The login command is used when a user initially signs onto UNIX, or it may be used at any time to change
from one user to another. The latter case is the one summarized above and described here. See ‘How to
Get Started’ for how to dial up initially.

If login is invoked without an argument, it will ask for a user name, and, if appropriate, a password. Echo-
ing is turned off (if possible) during the typing of the password, so it will not appear on the written record
of the session.

After a successful login, accounting files are updated and the user is informed of the existence of mailbox
and message-of-the-day files.

Login is recognized by the Shell and executed directly (without forking).

FILES

/tmp/utmp accounting
/tmp/wtmp accounting
mailbox mail
/etc/motd message-of-the-day
/etc/passwd password file

SEE ALSO

init(VII), getty(VII), mail(I)

DIAGNOSTICS

‘login incorrect,’ if the name or the password is bad. ‘No Shell,’, ‘cannot open password file,’ ‘no directo-
ry’: consult a UNIX programming councilor.

BUGS

If the first login is unsuccessful, it tends to go into a state where it won’t accept a correct login. Hit EOT
and try again.

- 1 -



-

LS ( I ) 8/20/73 LS ( I )

NAME

ls − list contents of directory

SYNOPSIS

ls [ −ltasdru ] name ...

DESCRIPTION

For each directory argument, ls lists the contents of the directory; for each file argument, ls repeats its name
and any other information requested. The output is sorted alphabetically by default. When no argument is
given, the current directory is listed. When several arguments are given, the arguments are first sorted ap-
propriately, but file arguments appear before directories and their contents. There are several options:

−l list in long format, giving mode, number of links, owner, size in bytes, and time of last modification
for each file. (See below.)

−t sort by time modified (latest first) instead of by name, as is normal

−a list all entries; usually those beginning with ‘.’ are suppressed

−s give size in blocks for each entry

−d if argument is a directory, list only its name, not its contents (mostly used with −l to get status on di-
rectory)

−r reverse the order of sort to get reverse alphabetic or oldest first as appropriate

−u use time of last access instead of last modification for sorting (−t) or printing (−l)

The mode printed under the −l option contains 10 characters which are interpreted as follows: the first char-
acter is

d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
− if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner permis-
sions; the next to permissions to others in the same user-group; and the last to all others. Within each set
the three characters indicate permission respectively to read, to write, or to execute the file as a program.
For a directory, ‘execute’ permission is interpreted to mean permission to search the directory for a speci-
fied file. The permissions are indicated as follows:

r if the file is readable
w if the file is writable
x if the file is executable
− if the indicated permission is not granted

Finally, the group-execute permission character is given as s if the file has set-group-ID mode; likewise the
user-execute permission character is given as s if the file has set-user-ID mode.

FILES

/etc/passwd to get user ID’s for ls −l.

BUGS

- 1 -



-

MAIL ( I ) 10/25/72 MAIL ( I )

NAME

mail − send mail to another user

SYNOPSIS

mail [ −yn ]
mail letter person ...
mail person

DESCRIPTION

Mail without an argument searches for a file called mailbox, prints it if present, and asks if it should be
saved. If the answer is y, the mail is renamed mbox, otherwise it is deleted. Mail with a −y or −n argument
works the same way, except that the answer to the question is supplied by the argument.

When followed by the names of a letter and one or more people, the letter is appended to each person’s
mailbox. When a person is specified without a letter, the letter is taken from the sender’s standard input up
to an EOT. Each letter is preceded by the sender’s name and a postmark.

A person is either a user name recognized by login, in which case the mail is sent to the default working di-
rectory of that user, or the path name of a directory, in which case mailbox in that directory is used.

When a user logs in he is informed of the presence of mail.

FILES

/etc/passwd to identify sender and locate persons
mailbox input mail
mbox saved mail

SEE ALSO

login(I)

BUGS

The mail should be prepended rather than appended to the mailbox. The old mbox should not be destroyed
when new mail is saved.

- 1 -



-

MAN ( I ) 8/20/73 MAN ( I )

NAME

man − run off section of UNIX manual

SYNOPSIS

man [ section ] [ title ... ]

DESCRIPTION

Man is a shell command file that will locate and run off one or more sections of this manual. Section is the
section number of the manual, as an Arabic not Roman numeral, and is optional. Title is one or more sec-
tion names; these names bear a generally simple relation to the page captions in the manual. If the section
is missing, 1 is assumed. For example,

man man

would reproduce this page.

FILES

/usr/man/man?/*

BUGS

The manual is supposed to be reproducible either on the phototypesetter or on a typewriter. Howev er, on a
typewriter some information is necessarily lost.

- 1 -



-

MERGE ( I ) 11/7/73 MERGE ( I )

NAME

merge − merge several files

SYNOPSIS

merge [ −anr ] [ −n ] [ +n ] [ name ... ]

DESCRIPTION

Merge merges several files together and writes the result on the standard output. If a file is designated by an
unadorned ‘−’, the standard input is understood.

The merge is line-by-line in increasing ASCII collating sequence, except that upper-case letters are consid-
ered the same as the corresponding lower-case letters.

Merge understands several flag arguments.

−a Use strict ASCII collating sequence.

−n An initial numeric string, possibly preceded by ’−’, is sorted by numerical value.

−r Data is in reverse order.

−n The first n fields in each line are ignored. A field is defined as a string of non-space, non-tab charac-
ters separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields (with −n) are skipped before characters.

SEE ALSO

sort(I)

BUGS

Only 8 files can be handled; any further files are ignored.

- 1 -



-

MESG ( I ) 3/15/72 MESG ( I )

NAME

mesg − permit or deny messages

SYNOPSIS

mesg [ n ] [ y ]

DESCRIPTION

Mesg with argument n forbids messages via write by revoking non-user write permission on the user’s
typewriter. Mesg with argument y reinstates permission. All by itself, mesg reverses the current permis-
sion. In all cases the previous state is reported.

FILES

/dev/tty?

SEE ALSO

write(I)

DIAGNOSTICS

‘?’ if the standard input file is not a typewriter

BUGS

- 1 -



-

MKDIR ( I ) 3/15/72 MKDIR ( I )

NAME

mkdir − make a directory

SYNOPSIS

mkdir dirname ...

DESCRIPTION

Mkdir creates specified directories in mode 777. The standard entries ‘.’ and ‘..’ are made automatically.

SEE ALSO

rmdir(I)

BUGS

- 1 -



-

MV ( I ) 8/20/73 MV ( I )

NAME

mv − move or rename a file

SYNOPSIS

mv name1 name2

DESCRIPTION

Mv changes the name of name1 to name2. If name2 is a directory, name1 is moved to that directory with
its original file-name. Directories may only be moved within the same parent directory (just renamed).

If name2 already exists, it is removed before name1 is renamed. If name2 has a mode which forbids writ-
ing, mv prints the mode and reads the standard input to obtain a line; if the line begins with y, the move
takes place; if not, mv exits.

If name2 would lie on a different file system, so that a simple rename is impossible, mv copies the file and
deletes the original.

BUGS

It should take a −f flag, like rm, to suppress the question if the target exists and is not writable.

- 1 -



-

NICE ( I ) 11/1/73 NICE ( I )

NAME

nice − run a command at low priority

SYNOPSIS

nice command [ arguments ]

DESCRIPTION

Nice executes command at low priority.

SEE ALSO

nohup(I), nice(II)

BUGS

- 1 -



-

NM ( I ) 8/20/73 NM ( I )

NAME

nm − print name list

SYNOPSIS

nm [ −cjnru ] [ name ]

DESCRIPTION

Nm prints the symbol table from the output file of an assembler or loader run. Each symbol name is pre-
ceded by its value (blanks if undefined) and one of the letters U (undefined) A (absolute) T (text segment
symbol), D (data segment symbol), B (bss segment symbol), or C (common symbol). Global symbols have
their first character underlined. Normally, the output is sorted alphabetically and symbols consisting of a
letter followed by one or more digits are not printed (that is, symbols which look like C internal symbols).

If no file is given, the symbols in a.out are listed.

Options are:

−c list only C-style external symbols, that is those beginning with underscore ‘ ’.

−j list symbols consisting of a letter followed by digits, which are normally suppressed.

−n sort by value instead of by name

−r sort in reverse order

−u print only undefined symbols.

FILES

a.out

BUGS

- 1 -



-

NOHUP ( I ) 11/1/73 NOHUP ( I )

NAME

nohup − run a command immune to hangups

SYNOPSIS

nohup command [ arguments ]

DESCRIPTION

Nohup executes command with hangups, quits and interrupts all ignored.

SEE ALSO

nice(I), signal(II)

BUGS

- 1 -



-

NROFF ( I ) 1/15/73 NROFF ( I )

NAME

nroff − format text

SYNOPSIS

nroff [ +n ] [ −n ] [ −s ] [ −h ] [ −q ] [ −i ] files

DESCRIPTION

Nroff formats text according to control lines embedded in the text files. Nroff will read the standard input if
no file arguments are given. The non-file option arguments are interpreted as follows:

+n Output will commence at the first page whose page number is n or larger

−n will cause printing to stop after page n.

−s Stop prior to each page to permit paper loading. Printing is restarted by typing a ‘newline’ character.

−h Spaces are replaced where possible with tabs to speed up output (or reduce the size of the output file).

−q Prompt names for insertions are not printed and the bell character is sent instead; the insertion is not
echoed.

−i Causes the standard input to be read after the files.

Nroff is more completely described in [1]. A condensed Request Summary is included here.

FILES

/usr/lib/suftab suffix hyphenation tables
/tmp/rtm? temporary

SEE ALSO

[1] NROFF User’s Manual, internal memorandum.

BUGS

- 1 -



-

NROFF ( I ) 1/15/73 NROFF ( I )

REQUEST REFERENCE AND INDEX

Request Initial If no Cause
Form Value Argument Break Explanation

I. Page Control

.pl +N N=66 N=66 no Page Length.

.bp +N N=1 - yes Begin Page.

.pn +N N=1 ignored no Page Number.

.po +N N=0 N=prev no Page Offset.

.ne N - N=1 no NEed N lines.

II. Text Filling, Adjusting, and Centering

.br - - yes BReak.

.fi fill - yes FIll output lines.

.nf fill - yes NoFill.

.ad c adj,norm adjust no ADjust mode on.

.na adjust - no NoAdjust.

.ce N off N=1 yes CEnter N input text lines.

III. Line Spacing and Blank Lines

.ls +N N=1 N=prev no Line Spacing.

.sp N - N=1 yes SPace N lines

.lv N - N=1 no LeaVe N lines

.sv N - N=1 no SaVe N lines.

.os - - no Output Saved lines.

.ns space - no No-Space mode on.

.rs - - no Restore Spacing.

.xh off -  no EXtra-Half-line mode on.

IV. Line Length and Indenting

.ll +N N=65 N=prev no Line Length.

.in +N N=0 N=prev yes INdent.

.ti +N - N=1 yes Temporary Indent.

V. Macros, Diversion, and Line Traps

.de xx - ignored no DEfine or redefine a macro.

.ds xx - ignored no Define or redefine String.

.rm xx - - no ReMove macro name.

.di xx - end no DIvert output to macro "xx".

.wh -N xx - - no WHen; set a line trap.

.ch xx y - - no CHange trap line.

.ch -N -M - - no "

.ch xx -M - - no "

.ch -N y - - no "

VI. Number Registers

.nr ab +N -M- no Number Register.

.nr a +N -M - no "

.nc c \n \n no Number Character.

.ar arabic - no Arabic numbers.

.ro arabic - no Roman numbers.

.RO arabic - no ROMAN numbers.

VII. Input and Output Conventions and Character Translations

.ta N,M,... - none no PseudoTAbs setting.

.tc c space space no Tab replacement Character.

.lc c . . no Leader replacement Character.

.ul N - N=1 no UNderline input text lines.

- 2 -



-

NROFF ( I ) 1/15/73 NROFF ( I )

.cc c . . no Basic Control Character.

.c2 c ′ ′ no Nobreak control character.

.ec c - \  no Escape Character.

.li N - N=1 no Accept input lines LIterally.

.tr abcd.... - - no TRanslate on output.

VIII. Hyphenation.

.nh on - no No Hyphen.

.hy on -  no HYphenate.

.hc c none none no Hyphenation indicator Character.

IX. Three Part Titles.

.tl ′left′center′right′ - no TitLe.

.lt N N=65 N=prev no Length of Title.

X. Output Line Numbering.

.nm +N M S I off no Number Mode on or off, set parameters.

.np M S I - reset no Number Parameters set or reset.

XI. Conditional Input Line Acceptance

.if !N anything - no IF true accept line of "anything".

.if c anything - no "

.if !c anything - no "

.if N anything - no "

XII. Environment Switching.

.ev N  N=0 N=prev no EnVironment switched.

XIII. Insertions from the Standard Input Stream

.rd prompt - bell no ReaD insert.

.ex -  -  no EXit.

XIV. Input File Switching

.so filename - - no Switch SOurce file (push down).

.nx filename - no NeXt file.

XV. Miscellaneous

.tm mesg - - no Typewriter Message

.ig - - no IGnore.

.fl - - no FLush output buffer.

.ab - - no ABort.

- 3 -



-

OD ( I ) 1/15/73 OD ( I )

NAME

od − octal dump

SYNOPSIS

od [ −abcdho ] [ file ] [ [ + ] offset[ . ][ b ] ]

DESCRIPTION

Od dumps file in one or more formats as selected by the first argument. If the first argument is missing −o
is default. The meanings of the format argument characters are:

a interprets words as PDP-11 instructions and dis-assembles the operation code. Unknown operation
codes print as ???.

b interprets bytes in octal.

c interprets bytes in ascii. Unknown ascii characters are printed as \?.

d interprets words in decimal.

h interprets words in hex.

o interprets words in octal.

The file argument specifies which file is to be dumped. If no file argument is specified, the standard input is
used. Thus od can be used as a filter.

The offset argument specifies the offset in the file where dumping is to commence. This argument is nor-
mally interpreted as octal bytes. If ‘.’ is appended, the offset is interpreted in decimal. If ‘b’ is appended,
the offset is interpreted in blocks. (A block is 512 bytes.) If the file argument is omitted, the offset argu-
ment must be preceded by ‘+’.

Dumping continues until end-of-file.

SEE ALSO

db(I)

BUGS

- 1 -



-

OPR ( I ) 1/15/73 OPR ( I )

NAME

opr − off line print

SYNOPSIS

opr [ −− ] [ − ] [ + ] [ +− ]file ...

DESCRIPTION

Opr will arrange to have the 201 data phone daemon submit a job to the Honeywell 6070 to print the file ar-
guments. Normally, the output appears at the GCOS central site. If the first argument is −−, the output is
remoted to station R1, which has an IBM 1403 printer.

Normally, each file is printed in the state it is found when the data phone daemon reads it. If a particular
file argument is preceded by +, or a preceding argument of + has been encountered, then opr will make a
copy for the daemon to print. If the file argument is preceded by −, or a preceding argument of − has been
encountered, then opr will unlink (remove) the file.

If there are no arguments except for the optional −−, then the standard input is read and off-line printed.
Thus opr may be used as a filter.

FILES

/usr/dpd/* spool area
/etc/passwd personal ident cards
/etc/dpd daemon

SEE ALSO

dpd(I), passwd(V)

BUGS

There should be a way to specify a general remote site.

- 1 -



-

PASSWD ( I ) 9/1/72 PASSWD ( I )

NAME

passwd − set login password

SYNOPSIS

passwd name password

DESCRIPTION

The password is placed on the given login name. This can only be done by the person corresponding to the
login name or by the super-user. An explicit null argument ("") for the password argument will remove any
password from the login name.

FILES

/etc/passwd

SEE ALSO

login(I), passwd(V), crypt(III)

BUGS

- 1 -



-

PFE ( I ) 11/1/73 PFE ( I )

NAME

pfe − print floating exception

SYNOPSIS

pfe

DESCRIPTION

Pfe will examine the floating point exception register and print a diagnostic for the last floating point excep-
tion.

SEE ALSO

signal(II)

BUGS

Since there is but one floating point exception register and it cannot be saved and restored by the system,
the floating exception that is printed is the one that occured system wide. Floating exceptions are therefore
volatile.

- 1 -



-

PLOT ( I )  6/4/73 PLOT ( I )

NAME

plot − make a graph

SYNOPSIS

plot [ option ] ...

DESCRIPTION

Plot takes pairs of numbers from the standard input as abscissas and ordinates of a graph. The graph is
plotted on the storage scope, /dev/vt0.

The following options are recognized, each as a separate argument.

a Supply abscissas automatically (they are missing from the input); spacing is given by the next argu-
ment, or is assumed to be 1 if next argument is not a number.

c Place character string given by next argument at each point.

d Omit connections between points. (Disconnect.)

gn Grid style:
n=0, no grid
n=1, axes only
n=2, complete grid (default).

s Save screen, don’t erase before plotting.

x Next 1 (or 2) arguments are lower (and upper) x limits.

y Next 1 (or 2) arguments are lower (and upper) y limits.

Points are connected by straight line segments in the order they appear in input. If a specified lower limit
exceeds the upper limit, or if the automatic increment is negative, the graph is plotted upside down. Auto-
matic abscissas begin with the lower x limit, or with 0 if no limit is specified. Grid lines and automatically
determined limits fall on round values, however roundness may be subverted by giving an inappropriately
rounded lower limit. Plotting symbols specified by c are placed so that a small initial letter, such as + o x,
will fall approximately on the plotting point.

FILES

/dev/vt0

SEE ALSO

spline(VI)

BUGS

A limit of 1000 points is enforced silently.

- 1 -



-

PR ( I ) 1/15/73 PR ( I )

NAME

pr − print file

SYNOPSIS

pr [ −h name ] [ −n ] [ +n ] [ file ... ]

DESCRIPTION

Pr produces a printed listing of one or more files. The output is separated into pages headed by a date, the
name of the file or a header (if any), and the page number. If there are no file arguments, pr prints the stan-
dard input file, and is thus usable as a filter.

Options apply to all following files but may be reset between files:

−n produce n-column output

+n begin printing with page n.

−h treat the next argument as a header

If there is a header in force, it is printed in place of the file name. Interconsole messages via write(I) are
forbidden during a pr.

FILES

/dev/tty? to suspend messages.

SEE ALSO

cat(I), cp(I)

DIAGNOSTICS

none (files not found are ignored)

BUGS

It would be nice to be able to set the number of lines per page.

- 1 -



-

PROOF ( I ) 1/15/73 PROOF ( I )

NAME

proof − compare two text files

SYNOPSIS

proof oldfile newfile

DESCRIPTION

Proof lists those lines of newfile that differ from corresponding lines in oldfile. The line number in newfile
is given. When changes, insertions or deletions have been made the program attempts to resynchronize the
text in the two files by finding a sequence of lines in both files that again agree.

SEE ALSO

cmp(I), comm(I)

DIAGNOSTICS

yes, but they are undecipherable, e.g. ‘?1’.

BUGS

This program has a long way to go before even a list of specific bugs is appropriate.

- 1 -



-

PS ( I ) 10/15/73 PS ( I )

NAME

ps − process status

SYNOPSIS

ps [ alx ]

DESCRIPTION

Ps prints certain indicia about active processes. The a flag asks for information about all processes with
teletypes (ordinarily only one’s own processes are displayed); x asks even about processes with no type-
writer; l asks for a long listing. Ordinarily only the typewriter number (if not one’s own) and the process
number are given.

The long listing is columnar and contains

A number encoding the state (last digit) and flags (first 1 or 2 digits) of the process.

The priority of the process; high numbers mean low priority.

A number related in some unknown way to the scheduling heuristic.

The last character of the control typewriter of the process.

The process unique number (as in certain cults it is possible to kill a process if you know its true
name).

The size in blocks of the core image of the process.

The last column if non-blank tells the core address in the system of the event which the process is
waiting for; if blank, the process is running.

Unfortunately if you have forgotten the number of a process you will have to guess which one it is. Plain
ps will tell you only a list of numbers.

FILES

/usr/sys/unix system namelist
/dev/mem resident system

SEE ALSO

kill(I)

BUGS

The ability to see, even if dimly, the name by which the process was invoked would be welcome.

- 1 -



-

REW ( I ) 1/15/73 REW ( I )

NAME

rew − rewind tape

SYNOPSIS

rew [ [ m ]digit ]

DESCRIPTION

Rew rewinds DECtape or magtape drives. The digit is the logical tape number, and should range from 0 to
7. if the digit is preceded by m, re w applies to magtape rather than DECtape. A missing digit indicates
drive 0.

FILES

/dev/tap?
/dev/mt?

BUGS

- 1 -



-

RM ( I ) 1/20/73 RM ( I )

NAME

rm − remove (unlink) files

SYNOPSIS

rm [ −f ] [ −r ] name ...

DESCRIPTION

Rm removes the entries for one or more files from a directory. If an entry was the last link to the file, the
file is destroyed. Removal of a file requires write permission in its directory, but neither read nor write per-
mission on the file itself.

If there is no write permission to a file designated to be removed, rm will print the file name, its mode and
then read a line from the standard input. If the line begins with y, the file is removed, otherwise it is not.
The optional argument −f prevents this interaction.

If a designated file is a directory, an error comment is printed unless the optional argument −r has been
used. In that case, rm recursively deletes the entire contents of the specified directory. To remove directo-
ries per se see rmdir(I).

FILES

/etc/glob to implement the −r flag

SEE ALSO

rmdir(I)

BUGS

When rm removes the contents of a directory under the −r flag, full pathnames are not printed in diagnos-
tics.

- 1 -



-

RMDIR ( I ) 3/15/72 RMDIR ( I )

NAME

rmdir − remove directory

SYNOPSIS

rmdir dir ...

DESCRIPTION

Rmdir removes (deletes) directories. The directory must be empty (except for the standard entries ‘.’ and
‘..’, which rmdir itself removes). Write permission is required in the directory in which the directory ap-
pears.

BUGS

Needs a −r flag. Actually, write permission in the directory’s parent is not required.

- 1 -



-

ROFF ( I ) 6/12/72 ROFF ( I )

NAME

roff − format text

SYNOPSIS

roff [ +n ] [ −n ] [ −s ] [ −h ] file ...

DESCRIPTION

Roff formats text according to control lines embedded in the text in the given files. Encountering a nonexis-
tent file terminates printing. Incoming interconsole messages are turned off during printing. The optional
flag arguments mean:

+n Start printing at the first page with number n.

−n Stop printing at the first page numbered higher than n.

−s Stop before each page (including the first) to allow paper manipulation; resume on receipt of an inter-
rupt signal.

−h Insert tabs in the output stream to replace spaces whenever appropriate.

A Request Summary is attached.

FILES

/usr/lib/suftabsuffix hyphenation tables
/tmp/rtm?temporary

SEE ALSO

nroff (I), troff (I)

BUGS

Roff is the simplest of the runoff programs, but is virtually undocumented.

- 1 -



-

ROFF ( I ) 6/12/72 ROFF ( I )

REQUEST SUMMARY

Request Break Initial Meaning
.ad yes yes Begin adjusting right margins.
.ar no arabic Arabic page numbers.
.br yes - Causes a line break − the filling of the current line is stopped.
.bl n yes - Insert of n blank lines, on new page if necessary.
..bp +n yes n=1 Begin new page and number it n; no n means ‘+1’.
.cc c no c=. Control character becomes ‘c’.
.ce n yes - Center the next n input lines, without filling.
.de xx no - Define macro named ‘xx’ (definition ends on line beginning ‘..’).
.ds yes no Double space; same as ‘.ls 2’.
.ef t no t=´´´´ Even foot title becomes t.
.eh t no t=´´´´ Even head title becomes t.
.fi yes yes Begin filling output lines.
.fo no t=´´´´ All foot titles are t.
.hc c no none Hyphenation character set to ‘c’.
.he t no t=´´´´ All head titles are t.
.hx no - Title lines are suppressed.
.hy n  no n=1 Hyphenation is done, if n=1; and is not done, if n=0.
.ig no - Ignore input lines through a line beginning with ‘..’.
.in +n yes - Indent n spaces from left margin.
.ix +n no - Same as ‘.in’ but without break.
.li n no - Literal, treat next n lines as text.
.ll +n no n=65 Line length including indent is n characters.
.ls +n yes n=1 Line spacing set to n lines per output line.
.m1 n no n=2 Put n blank lines between the top of page and head title.
.m2 n no n=2 n blank lines put between head title and beginning of text on page.
.m3 n no n=1 n blank lines put between end of text and foot title.
.m4 n no n=3 n blank lines put between the foot title and the bottom of page.
.na yes no Stop adjusting the right margin.
.ne n no - Begin new page, if n output lines cannot fit on present page.
.nn +n no - The next n output lines are not numbered.
.n1 no no Number output lines; start with 1 each page
.n2 n no no Number output lines; stop numbering if n=0.
.ni +n no n=0 Line numbers are indented n.
.nf yes no Stop filling output lines.
.nx filename - Change to input file ‘filename’.
.of t no t=´´´´ Odd foot title becomes t.
.oh t no t=´´´´ Odd head title becomes t.
.pa +n yes n=1 Same as ‘.bp’.
.pl +n no n=66 Total paper length taken to be n lines.
.po +n no n=0 Page offset. All lines are preceded by N spaces.
.ro no arabic Roman page numbers.
.sk n no - Produce n blank pages starting next page.
.sp n yes - Insert block of n blank lines.
.ss yes yes Single space output lines, equivalent to ‘.ls 1’.
.ta N M ... - Pseudotab settings. Initial tab settings are columns 9,17,25,...
.tc c no c=‘ ’ Tab replacement character becomes ‘c’.
.ti +n yes - Temporarily indent next output line n space.
.tr abcd.. no - Translate a into b, c into d, etc.
.ul n no - Underline the letters and numbers in the next n input lines.

- 2 -



-

SH ( I ) 4/18/73 SH ( I )

NAME

sh − shell (command interpreter)

SYNOPSIS

sh [ name [ arg1 ... [ arg9 ] ] ]

DESCRIPTION

Sh is the standard command interpreter. It is the program which reads and arranges the execution of the
command lines typed by most users. It may itself be called as a command to interpret files of commands.
Before discussing the arguments to the Shell used as a command, the structure of command lines them-
selves will be given.

Commands. Each command is a sequence of non-blank command arguments separated by blanks. The
first argument specifies the name of a command to be executed. Except for certain types of special argu-
ments discussed below, the arguments other than the command name are passed without interpretation to
the invoked command.

If the first argument is the name of an executable file, it is invoked; otherwise the string ‘/bin/’ is prepended
to the argument. (In this way most standard commands, which reside in ‘/bin’, are found.) If no such com-
mand is found, the string ‘/usr’ is further prepended (to give ‘/usr/bin/command’) and another attempt is
made to execute the resulting file. (Certain lesser-used commands live in ‘/usr/bin’.) If the ‘/usr/bin’ file
exists, but is not executable, it is used by the Shell as a command file. That is to say it is executed as
though it were typed from the console. If all attempts fail, a diagnostic is printed.

Command lines. One or more commands separated by ‘ ’ or ‘ˆ’ constitute a pipeline. The standard output
of each command but the last in a pipeline is taken as the standard input of the next command. Each com-
mand is run as a separate process, connected by pipes (see pipe(II)) to its neighbors. A command line con-
tained in parentheses ‘( )’ may appear in place of a simple command as an element of a pipeline.

A command line consists of one or more pipelines separated, and perhaps terminated by ‘;’ or ‘&’. The
semicolon designates sequential execution. The ampersand causes the preceding pipeline to be executed
without waiting for it to finish. The process id of such a pipeline is reported, so that it may be used if nec-
essary for a subsequent wait or kill.

Termination Reporting. If a command (not followed by ‘&’) terminates abnormally, a message is printed.
(All terminations other than exit and interrupt are considered abnormal.) Termination reports for com-
mands followed by ‘&’ are given upon receipt of the first command subsequent to the termination of the
command, or when a wait is executed. The following is a list of the abnormal termination messages:

Bus error
Trace/BPT trap
Illegal instruction
IOT trap
EMT trap
Bad system call
Quit
Floating exception
Memory violation
Killed

If a core image is produced, ‘− Core dumped’ is appended to the appropriate message.

Redirection of I/O. There are three character sequences that cause the immediately following string to be
interpreted as a special argument to the Shell itself. Such an argument may appear anywhere among the ar-
guments of a simple command, or before or after a parenthesized command list, and is associated with that
command or command list.

An argument of the form ‘<arg’ causes the file ‘arg’ to be used as the standard input file of the associated
command.

An argument of the form ‘>arg’ causes file ‘arg’ to be used as the standard output file for the associated
command. ‘Arg’ is created if it did not exist, and in any case is truncated at the outset.

- 1 -



-

SH ( I ) 4/18/73 SH ( I )

An argument of the form ‘>>arg’ causes file ‘arg’ to be used as the standard output for the associated com-
mand. If ‘arg’ did not exist, it is created; if it did exist, the command output is appended to the file.

For example, either of the command lines

ls >junk; cat tail >>junk
( ls; cat tail ) >junk

creates, on file ‘junk’, a listing of the working directory, followed immediately by the contents of file ‘tail’.

Either of the constructs ‘>arg’ or ‘>>arg’ associated with any but the last command of a pipeline is ineffec-
tual, as is ‘<arg’ in any but the first.

Generation of argument lists. If any argument contains any of the characters ‘?’, ‘*’ or ‘[’, it is treated
specially as follows. The current directory is searched for files which match the given argument.

The character ‘*’ in an argument matches any string of characters in a file name (including the null string).

The character ‘?’ matches any single character in a file name.

Square brackets ‘[...]’ specify a class of characters which matches any single file-name character in the
class. Within the brackets, each ordinary character is taken to be a member of the class. A pair of charac-
ters separated by ‘−’ places in the class each character lexically greater than or equal to the first and less
than or equal to the second member of the pair.

Other characters match only the same character in the file name.

For example, ‘*’ matches all file names; ‘?’ matches all one-character file names; ‘[ab]*.s’ matches all file
names beginning with ‘a’ or ‘b’ and ending with ‘.s’; ‘?[zi−m]’ matches all two-character file names ending
with ‘z’ or the letters ‘i’ through ‘m’.

If the argument with ‘*’ or ‘?’ also contains a ‘/’, a slightly different procedure is used: instead of the cur-
rent directory, the directory used is the one obtained by taking the argument up to the last ‘/’ before a ‘*’ or
‘?’. The matching process matches the remainder of the argument after this ‘/’ against the files in the de-
rived directory. For example: ‘/usr/dmr/a*.s’ matches all files in directory ‘/usr/dmr’ which begin with ‘a’
and end with ‘.s’.

In any event, a list of names is obtained which match the argument. This list is sorted into alphabetical or-
der, and the resulting sequence of arguments replaces the single argument containing the ‘*’, ‘[’, or ‘?’.
The same process is carried out for each argument (the resulting lists are not merged) and finally the com-
mand is called with the resulting list of arguments.

For example: directory /usr/dmr contains the files a1.s, a2.s, ..., a9.s. From any directory, the command

as /usr/dmr/a?.s

calls as with arguments /usr/dmr/a1.s, /usr/dmr/a2.s, ... /usr/dmr/a9.s in that order.

Quoting. The character ‘\’ causes the immediately following character to lose any special meaning it may
have to the Shell; in this way ‘<’, ‘>’, and other characters meaningful to the Shell may be passed as part
of arguments. A special case of this feature allows the continuation of commands onto more than one line:
a new-line preceded by ‘\’ is translated into a blank.

Sequences of characters enclosed in double (") or single (´) quotes are also taken literally. For example:

ls  pr −h "My directory"

causes a directory listing to be produced by ls, and passed on to pr to be printed with the heading ‘My di-
rectory’. Quotes permit the inclusion of blanks in the heading, which is a single argument to pr.

Argument passing. When the Shell is invoked as a command, it has additional string processing capabili-
ties. Recall that the form in which the Shell is invoked is

sh [ name [ arg1 ... [ arg9 ] ] ]

The name is the name of a file which will be read and interpreted. If not given, this subinstance of the Shell
will continue to read the standard input file.

In command lines in the file (not in command input), character sequences of the form ‘$n’, where n is a
digit, are replaced by the nth argument to the invocation of the Shell (argn). ‘$0’ is replaced by name.

- 2 -



-

SH ( I ) 4/18/73 SH ( I )

End of file. An end-of-file in the Shell’s input causes it to exit. A side effect of this fact means that the
way to log out from UNIX is to type an EOT.

Special commands. The following commands are treated specially by the Shell.

chdir is done without spawning a new process by executing sys chdir (II).

login is done by executing /bin/login without creating a new process.

wait is done without spawning a new process by executing sys wait (II).

shift is done by manipulating the arguments to the Shell.

‘:’ is simply ignored.

Command file errors; interrupts. Any Shell-detected error, or an interrupt signal, during the execution of
a command file causes the Shell to cease execution of that file.

Process that are created with a ‘&’ ignore interrupts. Also if such a process has not redirected its input with
a ‘<’, its input is automatically redirected to the zero length file /dev/null.

FILES

/etc/glob, which interprets ‘*’, ‘?’, and ‘[’.
/dev/null as a source of end-of-file.

SEE ALSO

‘The UNIX Time-sharing System’, which gives the theory of operation of the Shell.
chdir(I), login(I), wait(I), shift(I)

BUGS

When output is redirected, particularly to make a multicommand pipeline, diagnostics tend to be sent down
the pipe and are sometimes lost altogether. Not all components of a pipeline swawned with ‘&’ ignore in-
terrupts.

- 3 -



-

SHIFT ( I ) 8/21/73 SHIFT ( I )

NAME

shift − adjust Shell arguments

SYNOPSIS

shift

DESCRIPTION

Shift is used in Shell command files to shift the argument list left by 1, so that old $2 can now be referred to
by $1 and so forth. Shift is useful to iterate over sev eral arguments to a command file. For example, the
command file

: loop
if $1x = x exit
pr −3 $1
shift
goto loop

prints each of its arguments in 3-column format.

Shift is executed within the Shell.

SEE ALSO

sh (I)

BUGS

- 1 -



-

SIZE ( I ) 9/2/72 SIZE ( I )

NAME

size − size of an object file

SYNOPSIS

size [ object ... ]

DESCRIPTION

The size, in bytes, of the object files are printed. If no file is given, a.out is default. The size is printed in
decimal for the text, data, and bss portions of each file. The sum of these is also printed in octal and deci-
mal.

BUGS

- 1 -



-

SLEEP ( I ) 11/1/73 SLEEP ( I )

NAME

sleep − suspend execution for an interval

SYNOPSIS

sleep time

DESCRIPTION

Sleep will suspend execution for time seconds. It is used to execute a command in a certain amount of time
as in:

(sleep 105; command)&

Or to execute a command every so often as in this shell command file:

: loop
command
sleep 37
goto loop

SEE ALSO

sleep(II)

BUGS

Time must be less than 65536 seconds.

- 1 -



-

SNO ( I ) 2/9/73 SNO ( I )

NAME

sno − Snobol interpreter

SYNOPSIS

sno [ file ]

DESCRIPTION

Sno is a Snobol III (with slight differences) compiler and interpreter. Sno obtains input from the concatena-
tion of file and the standard input. All input through a statement containing the label ‘end’ is considered
program and is compiled. The rest is available to ‘syspit’.

Sno differs from Snobol III in the following ways.

There are no unanchored searches. To get the same effect:

a ** b  unanchored search for b
a *x* b = x c unanchored assignment

There is no back referencing.

x = "abc"
a *x* x is an unanchored search for ‘abc’

Function declaration is different. The function declaration is done at compile time by the use of the label
‘define’. Thus there is no ability to define functions at run time and the use of the name ‘define’ is pre-
empted. There is also no provision for automatic variables other than the parameters. For example:

definef( )

or

define f(a,b,c)

All labels except ‘define’ (even ‘end’) must have a non-empty statement.

If ‘start’ is a label in the program, program execution will start there. If not, execution begins with the first
executable statement. ‘define’ is not an executable statement.

There are no builtin functions.

Parentheses for arithmetic are not needed. Normal precedence applies. Because of this, the arithmetic op-
erators ‘/’ and ‘*’ must be set off by space.

The right side of assignments must be non-empty.

Either ´ or " may be used for literal quotes.

The pseudo-variable ‘sysppt’ is not available.

SEE ALSO

Snobol III manual. (JACM; Vol. 11 No. 1; Jan 1964; pp 21)

BUGS

- 1 -



-

SORT ( I )  5/7/73 SORT ( I )

NAME

sort − sort a file

SYNOPSIS

sort [ −anr ] [ +n ] [ −n ] [ input [ output ] ]

DESCRIPTION

Sort sorts input and writes the result on output. If the output file is not given, the standard output is used. If
the input file is missing, the standard input is used. Thus sort may be used as a filter. The input and output
file may be the same.

The sort is line-by-line in increasing ASCII collating sequence, except that upper-case letters are consid-
ered the same as the corresponding lower-case letters.

Sort understands several flag arguments.

−a Use strict ASCII collating sequence.

−n An initial numeric string is sorted by numerical value.

−r Output is in reverse order.

−n The first n fields in each line are ignored. A field is defined as a string of non-space, non-tab charac-
ters separated by tabs and spaces from its neighbors.

+n The first n characters are ignored in the sort. Fields (with −n) are skipped before characters.

FILES

/tmp/stm?

BUGS

The largest file that can be sorted is about 128K bytes.

- 1 -



-

SPEAK ( I ) 8/15/73 SPEAK ( I )

NAME

speak − word to voice translator

SYNOPSIS

speak [ −epsv ] [ vocabulary [ output ] ]

DESCRIPTION

Speak turns a stream of words into utterances and outputs them to a voice synthesizer, or to a specified out-
put file. It has facilities for maintaining a vocabulary. It receives, from the standard input

− working lines: text of words separated by blanks
− phonetic lines: strings of phonemes for one word preceded and separated by commas. The phonemes

may be followed by comma-percent then a ‘replacement part’ − an ASCII string with no spaces. The
phonetic code is given in vsp(VII).

− empty lines
− command lines: beginning with !. The following command lines are recognized:

!r file replace coded vocabulary from file
!w file write coded vocabulary on file
!p print parsing for working word
!l list vocabulary on standard output with phonetics
!c word copy phonetics from working word to specified word
!d print phonetics for working word

Each working line replaces its predecessor. Its first word is the ‘working word’. Each phonetic line re-
places the phonetics stored for the working word. In particular, a phonetic line of comma only deletes the
entry for the working word. Each working line, phonetic line or empty line causes the working line to be
uttered. The process terminates at the end of input.

Unknown words are pronounced by rules, and failing that, are spelled. Spelling is done by taking each
character of the word, prefixing it with *, and looking it up. Unspellable words burp.

Speak is initialized with a coded vocabulary stored in file /usr/lib/speak.m. The vocabulary option substi-
tutes a different file for /usr/lib/speak.m.

A set of single letter options may appear in any order preceded by −. Their meanings are:

−e suppress English steps (4−8) below
−p suppress pronunciation by rule
−s suppress spelling
−v suppress voice output

The steps of pronunciation by rule are:

(1) If there were no lower case letters in the working line, fold all upper case letters to lower.
(2) Fold an initial cap to lower case, and try again.
(3) If word has only one letter, or has no lower case vowels, quit.
(4) If there is a final s, strip it.
(5) Replace final −ie by −y.
(6) If any changes have been made, try whole word again.
(7) Locate probable long vowels and capitalize them. Mark probable silent e’s.
(8) Put back the s stripped in (4), if any.
(9) Place # before and after word.
(10) Prefix word with %, and look up longest initial match in the stored table of words; if none, quit.
(11) Use phonemes from the stored phonetic string as pronunciation, and replace the matched stuff by the

replacement part of the phonetic string.
(12) If anything remains, go to (10).

Long vowels are located this way in step (7):

(1) A u appearing in context [ˆaeiou]u[ˆaeiouwxy][aieouy]. (The notation is just a regular expression à
la ed(I).) (pustUlous)

(2) One of [aeo] appearing in the context [aeo][ˆaehiouwxy][ie][aou] or in the context [aeo][ˆae-

- 1 -



-

SPEAK ( I ) 8/15/73 SPEAK ( I )

hiouwxy]ien is assumed long. The digram th behaves as a single letter in this test. (rAdium, facE-
tious, quOtient, carpAthian)

(3) If the first vowel in the word is i followed by one of aou, it is assumed long. (Iodine, dIameter, trI-
umph)

(4) If the only vowel in the word is final e, the vowel is assumed long. (bE, shE)
(5) If the only vowels in the word appear in the pattern [aeiouy][ˆaeiouwxy]S, where S is one of the suf-

fixes
−al −le −re −y

then the first vowel is assumed long. (glObal, tAble, lUcre, lAdy)
(6) If no suffix was found in (5), as many of these suffixes as possible are isolated from right to left.

Stripping stops when e has been stripped, nor is e stripped before a suffix beginning with e. Each
suffix is marked by inserting  just before the first letter, or just after e in those suffixes that begin
with e.

−able −ably −e −ed −en
−er −ery −est −ful −ly
−ing −less −ment −ness −or

(care  ful  ly, maj  or, fine  ry, state  , caree  r)
(7) If the word, exclusive of suffixes, ends in i or y, and contains no earlier vowel, then i or y is assumed

long. (pY (from pie), crY  ing, lIe  d)
(8) If the first suffix begins with one of [aeio], then the vowel [aeiouy] in an immediately preceding pat-

tern [ˆaeo][aeiouy][ˆaeiouwxy] is assumed long. The digram th behaves as a single letter in this test.
(cAre  ful  ly, bAthe  d, mAj  or, pOt  able, port  able)

(9) In these exceptional cases no long letter is assumed in the preceding step:
(i) before g, if there are any earlier vowels (postage  , stAge  , college  )
(ii) e is not long before l (travele  d)

(10) If the first suffix begins with one of [aeio], and the word exclusive of suffixes ends in
[aeiouyAEIOUY]th, then digram th is capitalized. (breaTH  ing, blITHe  ly)

(11) An attempt is made to recognize silent e in the middle of compound words. Such an e is marked by a
following  , and preceding vowels, other than e, are assumed long as in step (8). Silent e is marked
in the context [bdgmnprst][bdgpt]le[ˆaeioruy  ]S, where S is any string that contains [aeiouy] but
does not contain  or the end of the word. Silent e is also marked in the context
[ˆaeiu][aiou][ˆaeiouwxy]e[ˆaeinoruy]S. (simple  ton, fAce  guard, cAve  man, cavernous)

FILES

/usr/lib/speak.m

SEE ALSO

vs(VII), vs(IV)

DIAGNOSTICS

‘?’ for unknown command with !, or for unreadable or unwritable vocabulary file

BUGS

Vocabulary overflow is unchecked. Excessively long words cause dumps. Space is not reclaimed
from deleted entries.

- 2 -



-

SPLIT ( I ) 1/15/73 SPLIT ( I )

NAME

split − split a file into pieces

SYNOPSIS

split [ file1 [ file2 ] ]

DESCRIPTION

Split reads file1 and writes it in 1000-line pieces, as many as are necessary, onto a set of output files. The
name of the first output file is file2 with an ‘a’ appended, and so on through the alphabet and beyond. If no
output name is given, ‘x’ is default.

If no input file is given, or the first argument is ‘−’, then the standard input file is used.

BUGS

Watch out for 14-character file names. The number of lines per file should be an argument.

- 1 -



-

STRIP ( I ) 3/15/72 STRIP ( I )

NAME

strip − remove symbols and relocation bits

SYNOPSIS

strip name ...

DESCRIPTION

Strip removes the symbol table and relocation bits ordinarily attached to the output of the assembler and
loader. This is useful to save space after a program has been debugged.

The effect of strip is the the same as use of the −s option of ld.

FILES

/tmp/stm? temporary file

SEE ALSO

ld(I), as(I)

BUGS

- 1 -



-

STTY ( I ) 6/12/72 STTY ( I )

NAME

stty − set teletype options

SYNOPSIS

stty option ...

DESCRIPTION

Stty will set certain I/O options on the current output teletype. The option strings are selected from the fol-
lowing set:

ev en allow even parity
−ev en disallow even parity
odd allow odd parity
−odd disallow odd parity
raw raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed back)
−raw negate raw mode
−nl allow carriage return for new-line, and output CR-LF for carriage return or new-line
nl accept only new-line to end lines
echo echo back every character typed
−echo do not echo characters
lcase map upper case to lower case
−lcase do not map case
−tabs replace tabs by spaces in output
tabs preserve tabs
delay calculate cr, tab, and form-feed delays
−delay no cr/tab/ff delays
tdelay calculate tab delays
−tdelay no tab delays

SEE ALSO

stty(II)

BUGS

There should be ‘package’ options such as execuport, 33, or terminet.

- 1 -



-

SUM ( I ) 3/15/72 SUM ( I )

NAME

sum − sum file

SYNOPSIS

sum name ...

DESCRIPTION

Sum sums the contents of the bytes (mod 2ˆ16) of one or more files and prints the answer in octal. A sepa-
rate sum is printed for each file specified, along with the number of whole or partial 512-byte blocks read.

In practice, sum is often used to verify that all of a special file can be read without error.

BUGS

- 1 -



-

TIME ( I ) 8/16/73 TIME ( I )

NAME

time − time a command

SYNOPSIS

time command

DESCRIPTION

The given command is executed; after it is complete, time prints the elapsed time during the command, the
time spent in the system, and the time spent in execution of the command.

The execution time can depend on what kind of memory the program happens to land in; the user time in
MOS is often half what it is in core.

BUGS

Notice that time x >y puts the timing information into y. One can get around this by time sh followed by x
>y.
Elapsed time is accurate to the second, while the CPU times are measured to the 60th second. Thus the
sum of the CPU times can be up to a second larger than the elapsed time.

- 1 -



-

TP ( I ) 10/15/73 TP ( I )

NAME

tp − manipulate DECtape and magtape

SYNOPSIS

tp [ key ] [ name ... ]

DESCRIPTION

Tp saves and restores selected portions of the file system hierarchy on DECtape or mag tape. Its actions are
controlled by the key argument. The key is a string of characters containing at most one function letter and
possibly one or more function modifiers. Other arguments to the command are file or directory names
specifying which files are to be dumped, restored, or listed.

The function portion of the key is specified by one of the following letters:

r The indicated files and directories, together with all subdirectories, are dumped onto the tape. If
files with the same names already exist, they are replaced. ‘Same’ is determined by string com-
parison, so ‘./abc’ can never be the same as ‘/usr/dmr/abc’ even if ‘/usr/dmr’ is the current direc-
tory. If no file argument is given, ‘.’ is the default.

u updates the tape. u is the same as r, but a file is replaced only if its modification date is later than
the date stored on the tape; that is to say, if it has changed since it was dumped. u is the default
command if none is given.

d deletes the named files and directories from the tape. At least one file argument must be given.
This function is not permitted on magtapes.

x extracts the named files from the tape to the file system. The owner, mode, and date-modified are
restored to what they were when the file was dumped. If no file argument is given, the entire con-
tents of the tape are extracted.

t lists the names of all files stored on the tape which are the same as or are hierarchically below the
file arguments. If no file argument is given, the entire contents of the tape is listed.

The following characters may be used in addition to the letter which selects the function desired.

m Specifies magtape as opposed to DECtape.

0,...,7 This modifier selects the drive on which the tape is mounted. For DECtape, ‘x’ is default; for
magtape ‘0’ is the default.

v Normally tp does its work silently. The v (verbose) option causes it to type the name of each
file it treats preceded by the function letter. With the t function, v gives more information
about the tape entries than just the name.

c means a fresh dump is being created; the tape directory will be zeroed before beginning. Us-
able only with r and u. This option is assumed with magtape since it is impossible to selec-
tively overwrite magtape.

f causes new entries on tape to be ‘fake’ in that no data is present for these entries. Such fake
entries cannot be extracted. Usable only with r and u.

i Errors reading and writing the tape are noted, but no action is taken. Normally, errors cause a
return to the command level.

w causes tp to pause before treating each file, type the indicative letter and the file name (as with
v) and await the user’s response. Response y means ‘yes’, so the file is treated. Null response
means ‘no’, and the file does not take part in whatever is being done. Response x means ‘exit’;
the tp command terminates immediately. In the x function, files previously asked about have
been extracted already. With r, u, and d no change has been made to the tape.

FILES

/dev/tap?
/dev/mt?

- 1 -



-

TP ( I ) 10/15/73 TP ( I )

DIAGNOSTICS

Several; the non-obvious one is ‘Phase error’, which means the file changed after it was selected for dump-
ing but before it was dumped.

BUGS

- 2 -



-

TR ( I ) 9/24/73 TR ( I )

NAME

tr − transliterate

SYNOPSIS

tr [ −cds ] [ string1 [ string2 ] ]

DESCRIPTION

Tr copies the standard input to the standard output with substitution or deletion of selected characters. In-
put characters found in string1 are mapped into the corresponding characters of string2. If string2 is short,
it is padded with corresponding characters from string1. Any combination of the options −cds may be
used. −c complements the set of characters in string1 with respect to the universe of characters whose ascii
codes are 001 through 377 octal. −d deletes all input characters not in string1. −s squeezes all strings of
repeated output characters that are in string2 to single characters.

The following abbreviation conventions may be used to introduce ranges of characters or repeated charac-
ters into the strings:

[a −b ] stands for the string of characters whose ascii codes run from character a to character b.

[a *n ], where n is an integer or empty, stands for n-fold repetition of character a. n is taken to be octal or
decimal according as its first digit is or is not zero. A zero or missing n is taken to be huge; this facility is
useful for padding string2.

The escape character ‘\’ may be used as in sh to remove special meaning from any character in a string. In
addition, ‘\’ followed by 1, 2 or 3 octal digits stands for the character whose ascii code is given by those
digits.

The following example creates a list of all the words in ‘file1’ one per line in ‘file2’, where a word is taken
to be a maximal string of alphabetics. The strings are quoted to protect the special characters from interpre-
tation by the Shell; 012 is the ascii code for newline.

tr −cs "[A−Z][a−z]" "[\012*]" <file1 >file2

SEE ALSO

sh(I), ed(I), ascii(VII)

BUGS

Won’t handle ascii NUL.
Also, Kernighan’s Lemma can really bite you; try looking for strings which have \ and * in them.

- 1 -



-

TROFF ( I ) 1/15/73 TROFF ( I )

NAME

troff − format text

SYNOPSIS

troff [ +n ] [ −n ] [ −t ] [ −f ] [ −w ] [ −i ] [ −a ] files

DESCRIPTION

Tr off formats text for a Graphic Systems phototypesetter according to control lines embedded in the text
files. Tr off is based on nroff(I). The non-file option arguments are interpreted as follows:

+n Commence typesetting at the first page numbered n or larger.

−n Stop after page n.

−t Place output on standard output instead of the phototypesetter.

−f Refrain from feeding out paper and stopping the phototypesetter at the end.

−w Wait until phototypsetter is available, if currently busy.

−i Read from standard input after the files have been exhausted.

−a Send a printable approximation of the results to the standard output.

A TROFF Guide is available [1] which can be used in conjunction with an NROFF Manual [2].

FILES

/usr/lib/suftabsuffix hyphenation tables
/tmp/rtm?temporary

SEE ALSO

[1] Preliminary TROFF Guide (unpublished).
[2] NROFF User’s Manual (internal memorandum).
TROFF Made Trivial (unpublished).
nroff(I), roff(I)

BUGS

- 1 -



-

TSS ( I ) 3/15/72 TSS ( I )

NAME

tss − interface to MH-TSS

SYNOPSIS

tss

DESCRIPTION

Tss will call the Honeywell 6070 on the 201 data phone. It will then go into direct access with MH-TSS.
Output generated by MH-TSS is typed on the standard output and input requested by MH-TSS is read from
the standard input with UNIX typing conventions.

An interrupt signal is transmitted as a ‘break’ to MH-TSS.

Input lines beginning with ‘!’ are interpreted as UNIX commands. Input lines beginning with ‘˜’ are inter-
preted as commands to the interface routine.

˜<file insert input from named UNIX file
˜>file deliver tss output to named UNIX file
˜p pop the output file
˜q disconnect from tss (quit)
˜r file receive from HIS routine csr/daccopy
˜s file send file to HIS routine csr/daccopy

Ascii files may be most efficiently transmitted using the HIS routine csr/daccopy in this fashion. Bold face
text comes from MH-TSS. Aftname is the 6070 file to be dealt with; file is the UNIX file.

SYSTEM? csr/daccopy (s) aftname
Send Encoded File ˜s file

SYSTEM? csr/daccopy (r) aftname
Receive Encoded File ˜r file

FILES

/dev/dn0, /dev/dp0, /etc/msh

DIAGNOSTICS

Most often, ‘Transmission error on last message.’

BUGS

When problems occur, and they often do, tss exits rather abruptly.

- 1 -



-

TTY ( I ) 3/15/72 TTY ( I )

NAME

tty − get typewriter name

SYNOPSIS

tty

DESCRIPTION

Tty gives the name of the user’s typewriter in the form ‘ttyn’ for n a digit or letter. The actual path name is
then ‘/dev/ttyn’.

DIAGNOSTICS

‘not a tty’ if the standard input file is not a typewriter.

BUGS

- 1 -



-

TYPE ( I ) 6/12/72 TYPE ( I )

NAME

type − type on 2741

SYNOPSIS

type file ...

DESCRIPTION

Type copies its input files to the fixed output port ttyc converting to 2741 EBCDIC output code. Before
each new page (66 lines) and before each new file, type stops and reads the 2741 before continuing. This
allows time for insertion of single sheet paper. To continue, push the ATTN key on the 2741.

FILES

/dev/ttyc

BUGS

Since it is impossible to second guess a 2741, quite often it is necessary to print a # to put this device in a
state it might already be in.
The value of padding out a page with up to 66 carriage returns is doubtful.

- 1 -



-

TYPO ( I ) 1/15/73 TYPO ( I )

NAME

typo − find possible typos

SYNOPSIS

typo [ − ] file
1

...

DESCRIPTION

Typo hunts through a document for unusual words, typographic errors, and hapax legomena and prints them
on the standard output.

The words used in the document are printed out in decreasing order of peculiarity along with an index of
peculiarity. An index of 10 or more is considered peculiar. Printing of certain very common English words
is suppressed.

The statistics for judging words are taken from the document itself, with some help from known statistics of
English. The ‘−’ option suppresses the help from English and should be used if the document is written in,
for example, Urdu.

Roff and nroff control lines are ignored. Upper case is mapped into lower case. Quote marks, vertical bars,
hyphens, and ampersands are stripped from within words. Words hyphenated across lines are put back to-
gether.

FILES

/tmp/ttmp??, /usr/lib/salt, /usr/lib/w2006

BUGS

Because of the mapping into lower case and the stripping of special characters, words may be hard to locate
in the original text.

The expanded escape sequences of troff are not correctly recognized.

- 1 -



-

UNIQ ( I ) 12/1/72 UNIQ ( I )

NAME

uniq − report repeated lines in a file

SYNOPSIS

uniq [ −udc [ +n ] [ −n ] ] [ input [ output ] ]

DESCRIPTION

Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeeding copies of
repeated lines are removed; the remainder is written on the output file. Note that repeated lines must be ad-
jacent in order to be found; see sort(I). If the −u flag is used, just the lines that are not repeated in the origi-
nal file are output. The −d option specifies that one copy of just the repeated lines is to be written. The
normal mode output is the union of the −u and −d mode outputs.

The −c option supersedes −u and −d and generates an output report in the style of −ud but with each line
preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

−n The first n fields together with any blanks before each are ignored. A field is defined as a string
of non-space, non-tab characters separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO

sort(I), comm(I)

BUGS

- 1 -



-

WAIT ( I ) 4/9/73 WAIT ( I )

NAME

wait − aw ait completion of process

SYNOPSIS

wait

DESCRIPTION

Wait until all processes started with & have completed, and report on abnormal terminations.

Because sys wait must be executed in the parent process, the shell itself executes wait, without creating a
new process

SEE ALSO

sh(I)

BUGS

After executing wait there is no way to interrupt the processes waited on. This is because interrupts were
set to be ignored when the process was created. The only out (if the process does not terminate) is to kill
the process from another terminal or to hangup.

- 1 -



-

WC ( I ) 3/15/72 WC ( I )

NAME

wc − get (English) word count

SYNOPSIS

wc files

DESCRIPTION

Wc provides a count of the words, text lines, and control lines for each argument file. If no files are provid-
ed, wc reads the standard input.

A text line is a sequence of characters not beginning with ‘.’, ‘!’ or ‘´’ and ended by a new-line. A control
line is a line beginning with ‘.’, ‘!’ or ‘´’. A word is a sequence of characters bounded by the beginning of
a line, by the end of a line, or by a blank or a tab.

When there is more than one input file, a grand total is also printed.

DIAGNOSTICS

none; arguments not found are ignored.

BUGS

- 1 -



-

WHO ( I ) 3/15/72 WHO ( I )

NAME

who − who is on the system

SYNOPSIS

who [ who-file ]

DESCRIPTION

Who, without an argument, lists the name, typewriter channel, and login time for each current UNIX user.

Without an argument, who examines the /tmp/utmp file to obtain its information. If a file is given, that file
is examined. Typically the given file will be /tmp/wtmp, which contains a record of all the logins since it
was created. Then who will list logins, logouts, and crashes since the creation of the wtmp file.

Each login is listed with user name, typewriter name (with ‘/dev/’ suppressed), and date and time. When an
argument is given, logouts produce a similar line without a user name. Reboots produce a line with ‘x’ in
the place of the device name, and a fossil time indicative of when the system went down.

FILES

/tmp/utmp

SEE ALSO

login(I), init(VII)

BUGS

- 1 -



-

WRITE ( I ) 8/5/73 WRITE ( I )

NAME

write − write to another user

SYNOPSIS

write user [ ttyno ]

DESCRIPTION

Write copies lines from your typewriter to that of another user. When first called, it sends the message

message from yourname...

The recipient of the message should write back at this point. Communication continues until an end of file
is read from the typewriter or an interrupt is sent. At that point write writes ‘EOT’ on the other terminal
and exits.

If you want to write to a user who is logged in more than once, the ttyno argument may be used to indicate
the last character of the appropriate typewriter name.

Permission to write may be denied or granted by use of the mesg command. At the outset writing is al-
lowed. Certain commands, in particular roff and pr, disallow messages in order to prevent messy output.

If the character ‘!’ is found at the beginning of a line, write calls the mini-shell msh to execute the rest of
the line as a command.

The following protocol is suggested for using write: when you first write to another user, wait for him to
write back before starting to send. Each party should end each message with a distinctive signal ( (o) for
‘over’ is conventional) that the other may reply. (oo) (for ‘over and out’) is suggested when conversation is
about to be terminated.

FILES

/tmp/utmp to find user
/etc/msh to execute ‘!’

SEE ALSO

mesg(I), who(I)

BUGS

- 1 -



-

BREAK ( II ) 8/5/73 BREAK ( II )

NAME

break − set program break

SYNOPSIS

(break = 17.)
sys break; addr

char *sbrk(incr)

DESCRIPTION

Break sets the system’s idea of the lowest location not used by the program to addr (rounded up to the next
multiple of 64 bytes). Locations not less than addr and below the stack pointer are not in the address space
and will thus cause a memory violation if accessed.

From C, the calling sequence is different; incr more bytes are added to the program’s data space and a
pointer to the start of the new area is returned.

When a program begins execution via exec the break is set at the highest location defined by the program
and data storage areas. Ordinarily, therefore, only programs with growing data areas need to use break.

SEE ALSO

exec(II)

DIAGNOSTICS

The c-bit is set if the program requests more memory than the system limit (currently 20K words), or if
more than 8 segmentation registers would be required to implement the break. From C, −1 is returned for
these errors.

- 1 -



-

CHDIR ( II ) 8/5/73 CHDIR ( II )

NAME

chdir − change working directory

SYNOPSIS

(chdir = 12.)
sys chdir; dirname

chdir(dirname)
char *dirname;

DESCRIPTION

Dirname is the address of the pathname of a directory, terminated by a null byte. Chdir causes this directo-
ry to become the current working directory.

SEE ALSO

chdir(I)

DIAGNOSTICS

The error bit (c-bit) is set if the given name is not that of a directory or is not readable. From C, a −1 re-
turned value indicates an error, 0 indicates success.

- 1 -



-

CHMOD ( II ) 8/5/73 CHMOD ( II )

NAME

chmod − change mode of file

SYNOPSIS

(chmod = 15.)
sys chmod; name; mode

chmod(name, mode)
char *name;

DESCRIPTION

The file whose name is given as the null-terminated string pointed to by name has its mode changed to
mode. Modes are constructed by ORing together some combination of the following:

4000 set user ID on execution
2000 set group ID on execution
0400 read by owner
0200 write by owner
0100 execute by owner
0070 read, write, execute by group
0007 read, write, execute by others

Only the owner of a file (or the super-user) may change the mode.

SEE ALSO

chmod(I)

DIAGNOSTIC

Error bit (c-bit) set if name cannot be found or if current user is neither the owner of the file nor the super-
user. From C, a −1 returned value indicates an error, 0 indicates success.

- 1 -



-

CHOWN ( II ) 8/5/73 CHOWN ( II )

NAME

chown − change owner

SYNOPSIS

(chmod = 16.)
sys chown; name; owner

chown(name, owner)
char *name;

DESCRIPTION

The file whose name is given by the null-terminated string pointed to by name has its owner changed to
owner (a numerical user ID). Only the present owner of a file (or the super-user) may donate the file to an-
other user. Changing the owner of a file removes the set-user-ID protection bit unless it is done by the su-
per user or the real user ID is the new owner.

SEE ALSO

chown(I), uids(V)

DIAGNOSTICS

The error bit (c-bit) is set on illegal owner changes. From C a −1 returned value indicates error, 0 indicates
success.

- 1 -



-

CLOSE ( II ) 8/5/73 CLOSE ( II )

NAME

close − close a file

SYNOPSIS

(close = 6.)
(file descriptor in r0)
sys close

close(fildes)

DESCRIPTION

Given a file descriptor such as returned from an open, creat, or pipe call, close closes the associated file. A
close of all files is automatic on exit, but since processes are limited to 10 simultaneously open files, close
is necessary for programs which deal with many files.

SEE ALSO

creat(II), open(II), pipe(II)

DIAGNOSTICS

The error bit (c-bit) is set for an unknown file descriptor. From C a −1 indicates an error, 0 indicates suc-
cess.

- 1 -



-

CREAT ( II )  8/5/73 CREAT ( II )

NAME

creat − create a new file

SYNOPSIS

(creat = 8.)
sys creat; name; mode
(file descriptor in r0)

creat(name, mode)
char *name;

DESCRIPTION

Creat creates a new file or prepares to rewrite an existing file called name, given as the address of a null-ter-
minated string. If the file did not exist, it is given mode mode. See chmod(II) for the construction of the
mode argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor is returned (in r0).

The mode given is arbitrary; it need not allow writing. This feature is used by programs which deal with
temporary files of fixed names. The creation is done with a mode that forbids writing. Then if a second in-
stance of the program attempts a creat, an error is returned and the program knows that the name is unus-
able for the moment.

SEE ALSO

write(II), close(II), stat(II)

DIAGNOSTICS

The error bit (c-bit) may be set if: a needed directory is not searchable; the file does not exist and the direc-
tory in which it is to be created is not writable; the file does exist and is unwritable; the file is a directory;
there are already 10 files open.

From C, a −1 return indicates an error.

- 1 -



-

CSW ( II ) 8/5/73 CSW ( II )

NAME

csw − read console switches

SYNOPSIS

(csw = 38.; not in assembler)
sys csw

getcsw( )

DESCRIPTION

The setting of the console switches is returned (in r0).

- 1 -



-

DUP ( II ) 8/5/73 DUP ( II )

NAME

dup − duplicate an open file descriptor

SYNOPSIS

(dup = 41.; not in assembler)
(file descriptor in r0)
sys dup

dup(fildes)
int fildes;

DESCRIPTION

Given a file descriptor returned from an open, pipe, or creat call, dup will allocate another file descriptor
synonymous with the original. The new file descriptor is returned in r0.

Dup is used more to reassign the value of file descriptors than to genuinely duplicate a file descriptor. Since
the algorithm to allocate file descriptors returns the lowest available value between 0 and 9, combinations
of dup and close can be used to manipulate file descriptors in a general way. This is handy for manipulat-
ing standard input and/or standard output.

SEE ALSO

creat(II), open(II), close(II), pipe(II)

DIAGNOSTICS

The error bit (c-bit) is set if: the given file descriptor is invalid; there are already 10 open files. From C, a
−1 returned value indicates an error.

- 1 -



-

EXEC ( II ) 8/5/73 EXEC ( II )

NAME

exec − execute a file

SYNOPSIS

(exec = 11.
sys exec; name; args
name: <...\0>
args: arg1; arg2; ...; 0
arg1: <...\0>
arg2: <...\0>

...

execl(name, arg1, arg2, ..., argn, 0)
char *name, *arg1, *arg2, ..., *argn;

execv(name, argv)
char *name;
char *argv[ ];

DESCRIPTION

Exec overlays the calling process with the named file, then transfers to the beginning of the core image of
the file. There can be no return from the file; the calling core image is lost.

Files remain open across exec calls. Ignored signals remain ignored across exec, but signals that are caught
are reset to their default values.

Each user has a real user ID and group ID and an effective user ID and group ID (The real ID identifies the
person using the system; the effective ID determines his access privileges.) Exec changes the effective user
and group ID to the owner of the executed file if the file has the ‘‘set-user-ID’’ or ‘‘set-group-ID’’ modes.
The real user ID is not affected.

The form of this call differs somewhat depending on whether it is called from assembly language or C; see
below for the C version.

The first argument to exec is a pointer to the name of the file to be executed. The second is the address of a
null-terminated list of pointers to arguments to be passed to the file. Conventionally, the first argument is
the name of the file. Each pointer addresses a string terminated by a null byte.

Once the called file starts execution, the arguments are available as follows. The stack pointer points to a
word containing the number of arguments. Just above this number is a list of pointers to the argument
strings. The arguments are placed as high as possible in core.

sp→ nargs
arg1
...
argn

arg1: <arg1\0>
...

argn: <argn\0>

From C, two intefaces are available. execl is useful when a known file with known arguments is being
called; the arguments to execl are the character strings constituting the file and the arguments; as in the ba-
sic call, the first argument is conventionally the same as the file name (or its last component). A 0 argument
must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the arguments to execv
are the name of the file to be executed and a vector of strings containing the arguments. The last argument
string must be followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(argc, argv)
int argc;

- 1 -



-

EXEC ( II ) 8/5/73 EXEC ( II )

char *argv[];

where argc is the argument count and argv is an array of character pointers to the arguments themselves.
As indicated, argc is conventionally at least one and the first member of the array points to a string contain-
ing the name of the file.

Argv is not directly usable in another execv, since argv[argc] is −1 and not 0.

SEE ALSO

fork(II)

DIAGNOSTICS

If the file cannot be found, if it is not executable, if it does not have a valid header (407 or 410 octal as first
word), if maximum memory is exceeded, or if the arguments require more than 512 bytes a return from ex-
ec constitutes the diagnostic; the error bit (c-bit) is set. From C the returned value is −1.

BUGS

Only 512 characters of arguments are allowed.

- 2 -



-

EXIT ( II ) 8/5/73 EXIT ( II )

NAME

exit − terminate process

SYNOPSIS

(exit = 1.)
(status in r0)
sys exit

exit(status)
int status;

DESCRIPTION

Exit is the normal means of terminating a process. Exit closes all the process’ files and notifies the parent
process if it is executing a wait. The low byte of r0 (resp. the argument to exit) is available as status to the
parent process.

This call can never return.

SEE ALSO

wait(II)

DIAGNOSTICS

None.

- 1 -



-

FORK ( II ) 8/5/73 FORK ( II )

NAME

fork − spawn new process

SYNOPSIS

(fork = 2.)
sys fork
(new process return)
(old process return)

fork( )

DESCRIPTION

Fork is the only way new processes are created. The new process’s core image is a copy of that of the caller
of fork. The only distinction is the return location and the fact that r0 in the old (parent) process contains
the process ID of the new (child) process. This process ID is used by wait.

From C, the returned value is 0 in the child process, non-zero in the parent process; however, a return of −1
indicates inability to create a new process.

SEE ALSO

wait(II), exec(II)

DIAGNOSTICS

The error bit (c-bit) is set in the old process if a new process could not be created because of lack of process
space. From C, a return of −1 (not just negative) indicates an error.

- 1 -



-

FSTAT ( II )  8/5/73 FSTAT ( II )

NAME

fstat − get status of open file

SYNOPSIS

(fstat = 28.)
(file descriptor in r0)
sys fstat; buf

fstat(fildes, buf)
struct inode buf;

DESCRIPTION

This call is identical to stat, except that it operates on open files instead of files given by name. It is most
often used to get the status of the standard input and output files, whose names are unknown.

SEE ALSO

stat(II)

DIAGNOSTICS

The error bit (c-bit) is set if the file descriptor is unknown; from C, a −1 return indicates an error, 0 indi-
cates success.

- 1 -



-

GETGID ( II ) 8/5/73 GETGID ( II )

NAME

getgid − get group identification

SYNOPSIS

(getgid = 47.; not in assembler)
sys getgid

getgid( )

DESCRIPTION

Getgid returns the real group ID of the current process. The real group ID identifies the group of the person
who is logged in, in contradistinction to the effective group ID, which determines his access permission at
the moment. It is thus useful to programs which operate using the ‘‘set group ID’’ mode, to find out who
invoked them.

SEE ALSO

setgid(II)

DIAGNOSTICS

−

- 1 -



-

GETUID ( II ) 8/5/73 GETUID ( II )

NAME

getuid − get user identification

SYNOPSIS

(getuid = 24.)
sys getuid

getuid( )

DESCRIPTION

Getuid returns the real user ID of the current process. The real user ID identifies the person who is logged
in, in contradistinction to the effective user ID, which determines his access permission at the moment. It is
thus useful to programs which operate using the ‘‘set user ID’’ mode, to find out who invoked them.

SEE ALSO

setuid(II)

DIAGNOSTICS

−

- 1 -



-

GTTY ( II ) 8/5/73 GTTY ( II )

NAME

gtty − get typewriter status

SYNOPSIS

(gtty = 32.)
(file descriptor in r0)
sys gtty; arg
arg: .=.+6

gtty(fildes, arg)
int arg[3];

DESCRIPTION

Gtty stores in the three words addressed by arg the status of the typewriter whose file descriptor is given in
r0 (resp. given as the first argument). The format is the same as that passed by stty.

SEE ALSO

stty(II)

DIAGNOSTICS

Error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a −1 value is returned for
an error, 0, for a successful call.

- 1 -



-

INDIR ( II ) 8/5/73 INDIR ( II )

NAME

indir − indirect system call

SYNOPSIS

(indir = 0.; not in assembler)
sys indir; syscall

DESCRIPTION

The system call at the location syscall is executed. Execution resumes after the indir call.

The main purpose of indir is to allow a program to store arguments in system calls and execute them out of
line in the data segment. This preserves the purity of the text segment.

If indir is executed indirectly, it is a no-op.

SEE ALSO

−

DIAGNOSTICS

−

- 1 -



-

INTRO ( II )  11/5/73 INTRO ( II )

INTRODUCTION TO SYSTEM CALLS

Section II of this manual lists all the entries into the system. In most cases two calling sequences are specified, one
of which is usable from assembly language, and the other from C. Most of these calls have an error return. From
assembly language an erroneous call is always indicated by turning on the c-bit of the condition codes. The pres-
ence of an error is most easily tested by the instructions bes and bec (‘‘branch on error set (or clear)’’). These are
synonyms for the bcs and bcc instructions.

From C, an error condition is indicated by an otherwise impossible returned value. Almost always this is −1; the in-
dividual sections specify the details.

In both cases an error number is also available. In assembly language, this number is returned in r0 on erroneous
calls. From C, the external variable errno is set to the error number. Errno is not cleared on succesful calls, so it
should be tested only after an error has occurred. There is a table of messages associated with each error, and a rou-
tine for printing the message. See perror (III).

The possible error numbers are not recited with each writeup in section II, since many errors are possible for most of
the calls. Here is a list of the error numbers, their names inside the system (for the benefit of system-readers), and
the messages available using perror. A short explanation is also provided.

0 − (unused)

1 EPERM Not owner and not super-user
Typically this error indicates an attempt to modify a file in some way forbidden except to its owner. It is also
returned for attempts by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or when one of the direc-
tories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to signal does not exist, or is already dead.

4 − (unused)

5 EIO I/O error
Some physical I/O error occurred during a read or write. This error may in some cases occur on a call fol-
lowing the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of the device. It may al-
so occur when, for example, a tape drive is not dialled in or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 512 bytes (counting the null at the end of each argument) is presented to exec.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not start with one
of the magic numbers 407 or 410.

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to a file which is open on-
ly for writing (resp. reading).

10 ECHILD No children

- 1 -



-

INTRO ( II )  11/5/73 INTRO ( II )

Wait and the process has no living or unwaited-for children.

11 EAGAIN No more processes
In a fork, the system’s process table is full and no more processes can for the moment be created.

12 ENOMEM Not enough core
During an exec or break, a program asks for more core than the system is able to supply. This is not a tempo-
rary condition; the maximum core size is a system parameter. The error may also occur if the arrangement of
text, data, and stack segments is such as to require more than the existing 8 segmentation registers.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 − (unused)

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount.

16 EBUSY Mount device busy
An attempt was made to dismount a device on which there is an open file or some process’s current directory.

17 EEXIST File exists
In existing file was mentioned in a context in which it should not have, e.g. link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name or as an argument to
chdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: currently, dismounting a non-mounted device, mentioning an unknown signal in sig-
nal, and giving an unknown request in stty to the TIU special file.

23 ENFILE File table overflow
The system’s table of open files is full, and temporarily no more opens can be accepted.

24 EMFILE Too many open files
Only 10 files can be open per process; this error occurs when the eleventh is opened.

25 ENOTTY Not a typewriter
The file mentioned in stty or gtty is not a typewriter or one of the other devices to which these calls apply.

26 ETXTBSY Te xt file busy
An attempt to execute a pure-procedure program which is currently open for writing (or reading!).

27 EFBIG File too large
An attempt to make a file larger than the maximum of 2048 blocks.

28 ENOSPC No space left on device

- 2 -



-

INTRO ( II )  11/5/73 INTRO ( II )

During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE Seek on pipe
A seek was issued to a pipe. This error should also be issued for other non-seekable devices.

- 3 -



-

KILL ( II ) 8/5/73 KILL ( II )

NAME

kill − send signal to a process

SYNOPSIS

(kill = 37.; not in assembler)
(process number in r0)
sys kill; sig

DESCRIPTION

Kill sends the signal sig to the process specified by the process number in r0. See signal(II) for a list of sig-
nals.

The sending and receiving processes must have the same controlling typewriter, otherwise this call is re-
stricted to the super-user.

SEE ALSO

signal(II), kill(I)

DIAGNOSTICS

The error bit (c-bit) is set if the process does not have the same controlling typewriter and the user is not
super-user, or if the process does not exist.

BUGS

Equality between the controlling typewriters of the sending and receiving process is neither a necessary nor
sufficient condition for allowing the sending of a signal. The correct condition is equality of user IDs.

- 1 -



-

LINK ( II ) 8/5/73 LINK ( II )

NAME

link − link to a file

SYNOPSIS

(link = 9.)
sys link; name1; name2

link(name1, name2)
char *name1, *name2;

DESCRIPTION

A link to name1 is created; the link has the name name2. Either name may be an arbitrary path name.

SEE ALSO

link(I), unlink(II)

DIAGNOSTICS

The error bit (c-bit) is set when name1 cannot be found; when name2 already exists; when the directory of
name2 cannot be written; when an attempt is made to link to a directory by a user other than the super-user;
when an attempt is made to link to a file on another file system. From C, a −1 return indicates an error, a 0
return indicates success.

- 1 -



-

MKNOD ( II ) 8/5/73 MKNOD ( II )

NAME

mknod − make a directory or a special file

SYNOPSIS

(mknod = 14.; not in assembler)
sys mknod; name; mode; addr

mknod(name, mode, addr)
char *name;

DESCRIPTION

Mknod creates a new file whose name is the null-terminated string pointed to by name. The mode of the
new file (including directory and special file bits) is initialized from mode. The first physical address of the
file is initialized from addr. Note that in the case of a directory, addr should be zero. In the case of a spe-
cial file, addr specifies which special file.

Mknod may be invoked only by the super-user.

SEE ALSO

mkdir(I), mknod(I), fs(V)

DIAGNOSTICS

Error bit (c-bit) is set if the file already exists or if the user is not the super-user. From C, a −1 value indi-
cates an error.

- 1 -



-

MOUNT ( II ) 8/5/73 MOUNT ( II )

NAME

mount − mount file system

SYNOPSIS

(mount = 21.)
sys mount; special; name

DESCRIPTION

Mount announces to the system that a removable file system has been mounted on the block-structured spe-
cial file special; from now on, references to file name will refer to the root file on the newly mounted file
system. Special and name are pointers to null-terminated strings containing the appropriate path names.

Name must exist already. Its old contents are inaccessible while the file system is mounted.

SEE ALSO

mount(I), umount(II)

DIAGNOSTICS

Error bit (c-bit) set if: special is inaccessible or not an appropriate file; name does not exist; special is al-
ready mounted; there are already too many file systems mounted.

- 1 -



-

NICE ( II ) 8/5/73 NICE ( II )

NAME

nice − set program priority

SYNOPSIS

(nice = 34.)
(priority in r0)
sys nice

nice(priority)

DESCRIPTION

The scheduling priority of the process is changed to the argument. Positive priorities get less service than
normal; 0 is default. Only the super-user may specify a negative priority. The valid range of priority is 20
to −220. The value of 16 is recommended to users who wish to execute long-running programs without
flak from the administration.

The effect of this call is passed to a child process by the fork system call. The effect can be cancelled by
another call to nice with a priority of 0.

SEE ALSO

nice(I)

DIAGNOSTICS

The error bit (c-bit) is set if the user requests a priority outside the range of 0 to 20 and is not the super-us-
er.

- 1 -



-

OPEN ( II ) 8/5/73 OPEN ( II )

NAME

open − open for reading or writing

SYNOPSIS

(open = 5.)
sys open; name; mode

open(name, mode)
char *name;

DESCRIPTION

Open opens the file name for reading (if mode is 0), writing (if mode is 1) or for both reading and writing
(if mode is 2). Name is the address of a string of ASCII characters representing a path name, terminated by
a null character.

The returned file descriptor should be saved for subsequent calls to read, write, and close.

SEE ALSO

creat(II), read(II), write(II), close(II)

DIAGNOSTICS

The error bit (c-bit) is set if the file does not exist, if one of the necessary directories does not exist or is un-
readable, if the file is not readable (resp. writable), or if 10 files are open. From C, a −1 value is returned on
an error.

- 1 -



-

PIPE ( II ) 8/5/73 PIPE ( II )

NAME

pipe − create a pipe

SYNOPSIS

(pipe = 42.)
sys pipe
(read file descriptor in r0)
(write file descriptor in r1)

pipe(fildes)
int fildes[2];

DESCRIPTION

The pipe system call creates an I/O mechanism called a pipe. The file descriptors returned can be used in
read and write operations. When the pipe is written using the descriptor returned in r1 (resp. fildes[1]), up
to 4096 bytes of data are buffered before the writing process is suspended. A read using the descriptor re-
turned in r0 (resp. fildes[0]) will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by subse-
quent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors closed) return an
end-of-file. Write calls under similar conditions are ignored.

SEE ALSO

sh(I), read(II), write(II), fork(II)

DIAGNOSTICS

The error bit (c-bit) is set if more than 8 files are already open. From C, a −1 returned value indicates an er-
ror.

- 1 -



-

READ ( II ) 8/5/73 READ ( II )

NAME

read − read from file

SYNOPSIS

(read = 3.)
(file descriptor in r0)
sys read; buffer; nbytes

read(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION

A file descriptor is a word returned from a successful open, creat, or pipe call. Buffer is the location of
nbytes contiguous bytes into which the input will be placed. It is not guaranteed that all nbytes bytes will
be read; for example if the file refers to a typewriter at most one line will be returned. In any event the
number of characters read is returned (in r0).

If the returned value is 0, then end-of-file has been reached.

SEE ALSO

open(II), creat(II), pipe(II)

DIAGNOSTICS

As mentioned, 0 is returned when the end of the file has been reached. If the read was otherwise unsuc-
cessful the error bit (c-bit) is set. Many conditions can generate an error: physical I/O errors, bad buffer ad-
dress, preposterous nbytes, file descriptor not that of an input file. From C, a −1 return indicates the error.

- 1 -



-

SEEK ( II ) 8/5/73 SEEK ( II )

NAME

seek − move read/write pointer

SYNOPSIS

(seek = 19.)
(file descriptor in r0)
sys seek; offset; ptrname

seek(fildes, offset, ptrname)

DESCRIPTION

The file descriptor refers to a file open for reading or writing. The read (resp. write) pointer for the file is
set as follows:

if ptrname is 0, the pointer is set to offset.

if ptrname is 1, the pointer is set to its current location plus offset.

if ptrname is 2, the pointer is set to the size of the file plus offset.

if ptrname is 3, 4 or 5, the meaning is as above for 0, 1 and 2 except that the offset is multiplied by 512.

If ptrname is 0 or 3, offset is unsigned, otherwise it is signed.

SEE ALSO

open(II), creat(II)

DIAGNOSTICS

The error bit (c-bit) is set for an undefined file descriptor. From C, a −1 return indicates an error.

- 1 -



-

SETGID ( II ) 8/5/73 SETGID ( II )

NAME

setgid − set process group ID

SYNOPSIS

(setgid = 46.; not in assembler)
(group ID in r0)
sys setgid

setgid(gid)

DESCRIPTION

The group ID of the current process is set to the argument. Both the effective and the real group ID are set.
This call is only permitted to the super-user or if the argument is the real group ID.

SEE ALSO

getgid(II)

DIAGNOSTICS

Error bit (c-bit) is set as indicated; from C, a −1 value is returned.

- 1 -



-

SETUID ( II ) 8/5/73 SETUID ( II )

NAME

setuid − set process user ID

SYNOPSIS

(setuid = 23.)
(user ID in r0)
sys setuid

setuid(uid)

DESCRIPTION

The user ID of the current process is set to the argument. Both the effective and the real user ID are set.
This call is only permitted to the super-user or if the argument is the real user ID.

SEE ALSO

getuid(II)

DIAGNOSTICS

Error bit (c-bit) is set as indicated; from C, a −1 value is returned.

- 1 -



-

SIGNAL ( II ) 8/5/73 SIGNAL ( II )

NAME

signal − catch or ignore signals

SYNOPSIS

(signal = 48.)
sys signal; sig; value

signal(sig, func)
int (*func)();

DESCRIPTION

When the signal defined by sig is sent to the current process, it is to be treated according to value. The fol-
lowing is the list of signals:

1 hangup
2 interrupt
3* quit
4* illegal instruction
5* trace trap
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11* segmentation violation
12* bad argument to sys call

If value is 0, the default system action applies to the signal. This is processes termination with or without a
core dump. If value is odd, the signal is ignored. Any other even value specifies an address in the process
where an interrupt is simulated. An RTI instruction will return from the interrupt. As a signal is caught, it
is reset to 0. Thus if it is desired to catch every such signal, the catching routine must issue another signal
call.

The starred signals in the list above cause core images if not caught and not ignored. In C, if func is 0 or 1,
the action is as described above. If func is even, it is assumed to be the address of a function entry point.
When the signal occurs, the function will be called. A return from the function will simulate the RTI.

After a fork, the child inherits all signals. The exec call resets all caught signals to default action.

SEE ALSO

kill (I, II)

DIAGNOSTICS

The error bit (c-bit) is set if the given signal is out of range. In C, a −1 indicates an error; 0 indicates suc-
cess.

- 1 -



-

SLEEP ( II ) 8/5/73 SLEEP ( II )

NAME

sleep − stop execution for interval

SYNOPSIS

(sleep = 35.; not in assembler)
(seconds in r0)
sys sleep

sleep(seconds)

DESCRIPTION

The current process is suspended from execution for the number of seconds specified by the argument.

SEE ALSO

sleep (I)

DIAGNOSTICS

−

- 1 -



-

STAT ( II )  8/5/73 STAT ( II )

NAME

stat − get file status

SYNOPSIS

(stat = 18.)
sys stat; name; buf

stat(name, buf)
char *name;
struct inode *buf;

DESCRIPTION

Name points to a null-terminated string naming a file; buf is the address of a 36(10) byte buffer into which
information is placed concerning the file. It is unnecessary to have any permissions at all with respect to
the file, but all directories leading to the file must be readable. After stat, buf has the following structure
(starting offset given in bytes):

struct {
char minor; /* +0: minor device of i-node */
char major; /* +1: major device */
int inumber /* +2 */
int flags; /* +4: see below */
char nlinks; /* +6: number of links to file */
char uid; /* +7: user ID of owner */
char gid; /* +8: group ID of owner */
char size0; /* +9: high byte of 24-bit size */
int size1; /* +10: low word of 24-bit size */
int addr[8]; /* +12: block numbers or device number */
int actime[2]; /* +28: time of last access */
int modtime[2]; /* +32: time of last modification */

};

The flags are as follows:

100000 i-node is allocated
060000 2-bit file type:

000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.

010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

SEE ALSO

stat(I), fstat(II), fs(V)

DIAGNOSTICS

Error bit (c-bit) is set if the file cannot be found. From C, a −1 return indicates an error.

- 1 -



-

STIME ( II ) 8/5/73 STIME ( II )

NAME

stime − set time

SYNOPSIS

(stime = 25.) (time in r0-r1)
sys stime

stime(tbuf)
int tbuf[2];

DESCRIPTION

Stime sets the system’s idea of the time and date. Time is measured in seconds from 0000 GMT Jan 1
1970. Only the super-user may use this call.

SEE ALSO

date(I), time(II), ctime(III)

DIAGNOSTICS

Error bit (c-bit) set if user is not the super-user.

- 1 -



-

STTY ( II ) 8/5/73 STTY ( II )

NAME

stty − set mode of typewriter

SYNOPSIS

(stty = 31.)
(file descriptor in r0)
sys stty; arg
arg: speed; 0; mode

stty(fildes, arg)
int arg[3];

DESCRIPTION

Stty sets mode bits and character speeds for the typewriter whose file descriptor is passed in r0 (resp. is the
first argument to the call). First, the system delays until the typewriter is quiescent. Then the speed and
general handling of the input side of the typewriter is set from the low byte of the first word of the arg, and
the speed of the output side is set from the high byte of the first word of the arg. The speeds are selected
from the following table. This table corresponds to the speeds supported by the DH-11 interface. The
starred entries are those speeds actually supported by the DC-11 interfaces actually present; if a non-starred
speed is selected, it will be ignored and the present speed left unchanged.

0 (turn off device)
1 50 baud
2 75 baud
3 110 baud
4* 134.5 baud
5* 150 baud
6 200 baud
7* 300 baud
8 600 baud
9* 1200 baud
10 1800 baud
11 2400 baud
12 4800 baud
13 9600 baud
14 External A
15 External B

In the current configuration, only 150 and 300 baud are really supported, in that the code conversion and
line control required for 2741’s (134.5 baud) must be implemented by the user’s program, and the half-du-
plex line discipline required for the 202 dataset (1200 baud) is not supplied.

The second word of the arg is currently unused and is available for expansion.

The third word of the arg sets the mode. It contains several bits which determine the system’s treatment of
the typewriter:

10000no delays after tabs (e.g. TN 300)
200 even parity allowed on input (e. g. for M37s)
100 odd parity allowed on input
040 raw mode: wake up on all characters
020 map CR into LF; echo LF or CR as CR-LF
010 echo (full duplex)
004 map upper case to lower on input (e. g. M33)
002 echo and print tabs as spaces
001 inhibit all function delays (e. g. CRTs)

Characters with the wrong parity, as determined by bits 200 and 100, are ignored.

In raw mode, every character is passed back immediately to the program. No erase or kill processing is
done; the end-of-file character (EOT), the interrupt character (DELETE) and the quit character (FS) are not

- 1 -



-

STTY ( II ) 8/5/73 STTY ( II )

treated specially.

Mode 020 causes input carriage returns to be turned into new-lines; input of either CR or LF causes LF-CR
both to be echoed (used for GE TermiNet 300’s and other terminals without the newline function).

SEE ALSO

stty(I), gtty(II)

DIAGNOSTICS

The error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a negative value indi-
cates an error.

- 2 -



-

SYNC ( II ) 8/5/73 SYNC ( II )

NAME

sync − update super-block

SYNOPSIS

(sync = 36.; not in assembler)
sys sync

DESCRIPTION

Sync causes all information in core memory that should be on disk to be written out. This includes modi-
fied super blocks, modified i-nodes, and delayed block I/O.

It should be used by programs which examine a file system, for example check, df, etc. It is mandatory be-
fore a boot.

SEE ALSO

sync (VIII), update (VIII)

DIAGNOSTICS

−

- 1 -



-

TIME ( II ) 8/5/73 TIME ( II )

NAME

time − get date and time

SYNOPSIS

(time = 13.)
sys time

time(tvec)
int tvec[2];

DESCRIPTION

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. From as, the high order
word is in the r0 register and the low order is in r1. From C, the user-supplied vector is filled in.

SEE ALSO

date(I), stime(II), ctime(III)

DIAGNOSTICS

none

- 1 -



-

TIMES ( II ) 8/5/73 TIMES ( II )

NAME

times − get process times

SYNOPSIS

(times = 43.; not in assembler)
sys times; buffer

times(buffer)
struct tbuffer *buffer;

DESCRIPTION

Times returns time-accounting information for the current process and for the terminated child processes of
the current process. All times are in 1/60 seconds.

After the call, the buffer will appear as follows:

struct tbuffer {
int proc user time;
int proc system time;
int child user time[2];
int child system time[2];

};

The children times are the sum of the children’s process times and their children’s times.

SEE ALSO

time(I)

DIAGNOSTICS

−

BUGS

The process times should be 32 bits as well.

- 1 -



-

UMOUNT ( II ) 8/5/73 UMOUNT ( II )

NAME

umount − dismount file system

SYNOPSIS

(umount = 22.)
sys umount; special

DESCRIPTION

Umount announces to the system that special file special is no longer to contain a removable file system.
The file associated with the special file reverts to its ordinary interpretation (see mount ).

SEE ALSO

umount(I), mount(II)

DIAGNOSTICS

Error bit (c-bit) set if no file system was mounted on the special file or if there are still active files on the
mounted file system.

- 1 -



-

UNLINK ( II ) 8/5/73 UNLINK ( II )

NAME

unlink − remove directory entry

SYNOPSIS

(unlink = 10.)
sys unlink; name

unlink(name)
char *name;

DESCRIPTION

Name points to a null-terminated string. Unlink removes the entry for the file pointed to by name from its
directory. If this entry was the last link to the file, the contents of the file are freed and the file is destroyed.
If, however, the file was open in any process, the actual destruction is delayed until it is closed, even though
the directory entry has disappeared.

SEE ALSO

rm(I), rmdir(I), link(II)

DIAGNOSTICS

The error bit (c-bit) is set to indicate that the file does not exist or that its directory cannot be written. Write
permission is not required on the file itself. It is also illegal to unlink a directory (except for the super-us-
er). From C, a −1 return indicates an error.

- 1 -



-

WAIT ( II ) 8/5/73 WAIT ( II )

NAME

wait − wait for process to die

SYNOPSIS

(wait = 7.)
sys wait

wait(status)
int *status;

DESCRIPTION

Wait causes its caller to delay until one of its child processes terminates. If any child has died since the last
wait, return is immediate; if there are no children, return is immediate with the error bit set (resp. with a
value of −1 returned). In the case of several children several wait calls are needed to learn of all the deaths.

If no error is indicated on return, the r1 high byte (resp. the high byte stored into status ) contains the low
byte of the child process r0 (resp. the argument of exit ) when it terminated. The r1 (resp. status ) low byte
contains the termination status of the process. See signal(II) for a list of termination statuses (signals); 0
status indicates normal termination. If the 040 bit of the termination status is set, a core image of the
process was produced by the system.

SEE ALSO

exit(II), fork(II), signal(II)

DIAGNOSTICS

The error bit (c-bit) on if no children not previously waited for. From C, a returned value of −1 indicates an
error.

- 1 -



-

WRITE ( II ) 8/5/73 WRITE ( II )

NAME

write − write on a file

SYNOPSIS

(write = 4.)
(file descriptor in r0)
sys write; buffer; nbytes

write(fildes, buffer, nbytes)
char *buffer;

DESCRIPTION

A file descriptor is a word returned from a successful open, creat or pipe call.

Buffer is the address of nbytes contiguous bytes which are written on the output file. The number of charac-
ters actually written is returned (in r0). It should be regarded as an error if this is not the same as requested.

Writes which are multiples of 512 characters long and begin on a 512-byte boundary are more efficient than
any others.

SEE ALSO

creat(II), open(II), pipe(II)

DIAGNOSTICS

The error bit (c-bit) is set on an error: bad descriptor, buffer address, or count; physical I/O errors. From C,
a returned value of −1 indicates an error.

- 1 -



-

AT AN ( III ) 4/30/73 ATAN ( III )

NAME

atan − arc tangent function

SYNOPSIS

jsr r5,atan[2]

double atan(x)
double x;

double atan2(x, y)
double x, y;

DESCRIPTION

The atan entry returns the arc tangent of fr0 in fr0; from C, the arc tangent of x is returned. The range is
−π/2 to π/2. The atan2 entry returns the arc tangent of fr0/fr1 in fr0; from C, the arc tangent of x/y is re-
turned. The range is −π to π.

DIAGNOSTIC

There is no error return.

BUGS

- 1 -



-

AT OF ( III ) 4/30/73 ATOF ( III )

NAME

atof − ascii to floating

SYNOPSIS

double atof(nptr)
char *nptr;

DESCRIPTION

Atof converts a string to a floating number. Nptr should point to a string containing the number; the first un-
recognized character ends the number.

The only numbers recognized are: an optional minus sign followed by a string of digits optionally contain-
ing one decimal point, then followed optionally by the letter e followed by a signed integer.

DIAGNOSTICS

There are none; overflow results in a very large number and garbage characters terminate the scan.

BUGS

The routine should accept initial +, initial blanks, and E for e. Overflow should be signalled.

- 1 -



-

COMPAR ( III ) 1/15/73 COMPAR ( III )

NAME

compar − default comparison routine for qsort

SYNOPSIS

jsr pc,compar

DESCRIPTION

Compar is the default comparison routine called by qsort and is separated out so that the user can supply
his own comparison.

The routine is called with the width (in bytes) of an element in r3 and it compares byte-by-byte the element
pointed to by r0 with the element pointed to by r4.

Return is via the condition codes, which are tested by the instructions ‘‘blt’’ and ‘‘bgt’’. That is, in the ab-
sence of overflow, the condition (r0) < (r4) should leave the Z-bit off and N-bit on while (r0) > (r4) should
leave Z and N off. Still another way of putting it is that for elements of length 1 the instruction

cmpb (r0),(r4)

suffices.

Only r0 is changed by the call.

SEE ALSO

qsort (III)

BUGS

It could be recoded to run faster.

- 1 -



-

CRYPT ( III ) 4/30/73 CRYPT ( III )

NAME

crypt − password encoding

SYNOPSIS

mov $key,r0
jsr pc,crypt

char *crypt(key)
char *key;

DESCRIPTION

On entry, r0 should point to a string of characters terminated by an ASCII NULL. The routine performs an
operation on the key which is difficult to invert (i.e. encrypts it) and leaves the resulting eight bytes of
ASCII alphanumerics in a global cell called ‘‘word’’.

From C, the key argument is a string and the value returned is a pointer to the eight-character encrypted
password.

Login uses this result as a password.

SEE ALSO

passwd(I), passwd(V), login(I)

BUGS

- 1 -



-

CTIME ( III ) 10/15/73 CTIME ( III )

NAME

ctime − convert date and time to ASCII

SYNOPSIS

char *ctime(tvec)
int tvec[2];

[from Fortran]
double precision ctime

int *localtime(tvec)
int tvec[2];

int *gmtime(tvec)
int tvec[2];

DESCRIPTION

Ctime converts a time in the vector tvec such as returned by time (II) into ASCII and returns a pointer to a
character string in the form

Sun Sep 16 01:03:52 1973\n\0

All the fields have constant width.

Once the time has been placed into t and t+2, this routine is callable from assembly language as follows:

mov $t,−(sp)
jsr pc, ctime
tst (sp)+

and a pointer to the string is available in r0.

The localtime and gmtime entries return integer vectors to the broken-down time. Localtime corrects for
the time zone and possible daylight savings time; gmtime converts directly to GMT, which is the time
UNIX uses. The value is a pointer to an array whose components are

0 seconds
1 minutes
2 hours
3 day of the month (1-31)
4 month (0-11)
5 year − 1900
6 day of the week (Sunday = 0)
7 day of the year (0-365)
8 Daylight Saving Time flag if non-zero

The external variable timezone contains the difference, in seconds, between GMT and local standard time
(in EST, is 5*60*60); the external variable daylight is non-zero iff the standard U.S.A. Daylight Saving
Time conversion should be applied between the last Sundays in April and October. The external variable
nixonflg if non-zero supersedes daylight and causes daylight time all year round.

A routine named ctime is also available from Fortran. Actually it more resembles the time (II) system entry
in that it returns the number of seconds since the epoch 0000 GMT Jan. 1, 1970 (as a floating-point num-
ber).

SEE ALSO

time(II)

BUGS

- 1 -



-

ECVT ( III ) 4/30/73 ECVT ( III )

NAME

ecvt − output conversion

SYNOPSIS

jsr pc,ecvt

jsr pc,fcvt

char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)

DESCRIPTION

Ecvt is called with a floating point number in fr0.

On exit, the number has been converted into a string of ascii digits in a buffer pointed to by r0. The number
of digits produced is controlled by a global variable ndigits.

Moreover, the position of the decimal point is contained in r2: r2=0 means the d.p. is at the left hand end of
the string of digits; r2>0 means the d.p. is within or to the right of the string.

The sign of the number is indicated by r1 (0 for +; 1 for −).

The low order digit has suffered decimal rounding (i. e. may have been carried into).

From C, the value is converted and a pointer to a null-terminated string of ndigit digits is returned. The po-
sition of the decimal point is stored indirectly through decpt (negative means to the left of the returned dig-
its). If the sign of the result is negative, the word pointed to by sign is non-zero, otherwise it is zero.

Fcvt is identical to ecvt, except that the correct digit has had decimal rounding for F-style output of the
number of digits specified by ndigits.

SEE ALSO

printf(III)

BUGS

- 1 -



-

EXP ( III ) 4/30/73 EXP ( III )

NAME

exp − exponential function

SYNOPSIS

jsr r5,exp

double exp(x)
double x;

DESCRIPTION

The exponential of fr0 is returned in fr0. From C, the exponential of x is returned.

DIAGNOSTICS

If the result is not representable, the c-bit is set and the largest positive number is returned. From C, no di-
agnostic is available.

Zero is returned if the result would underflow.

BUGS

- 1 -



-

FPTRAP ( III ) 11/18/73 FPTRAP ( III )

NAME

fptrap − floating point interpreter

SYNOPSIS

sys signal; 4; fptrap

DESCRIPTION

Fptrap is a simulator of the 11/45 FP11-B floating point unit. It works by intercepting illegal instruction
faults and examining the offending operation codes for possible floating point.

FILES

found in /lib/libu.a; a fake version is in /lib/liba.a

DIAGNOSTICS

A break point trap is given when a real illegal instruction trap occurs.

SEE ALSO

signal(II)

BUGS

Rounding mode is not interpreted. Its slow.

- 1 -



-

GERTS ( III ) 3/15/72 GERTS ( III )

NAME

gerts − Gerts communication over 201

SYNOPSIS

jsr r5,connect
(error return)

jsr r5,gerts; fc; oc; ibuf; obuf
(error return)

other entry points: gcset, gout

DESCRIPTION

The GCOS GERTS interface is so painful that a description here is inappropriate. Anyone needing to use
this interface should seek divine guidance.

SEE ALSO

dn(IV), dp(IV), HIS documentation

FILES

found in /lib/libg.a

BUGS

- 1 -



-

GETARG ( III ) 11/24/73 GETARG ( III )

NAME

getarg − get command arguments from Fortran

SYNOPSIS

call getarg ( i, iarray, [ , isize ] )

DESCRIPTION

The getarg entry fills in iarray (which is considered to be integer) with the Hollerith string representing the
i th argument to the command in which it it is called. If no isize argument is specified, at least one blank is
placed after the argument, and the last word affected is blank padded. The user should make sure that the
array is big enough.

If the isize argument is given, the argument will be followed by blanks to fill up isize words, but even if the
argument is long no more than that many words will be filled in.

The blank-padded array is suitable for use as an argument to setfil (III).

The iargc entry returns the number of arguments to the command, counting the first (file-name) argument.

SEE ALSO

exec (II), setfil (III)

BUGS

- 1 -



-

GETC ( III ) 4/30/72 GETC ( III )

NAME

getc − buffered input

SYNOPSIS

mov $filename,r0
jsr r5,fopen; iobuf

fopen(filename, iobuf)
char *filename;
struct buf *iobuf;

jsr r5,getc; iobuf
(character in r0)

getc(iobuf)
struct buf *iobuf;

jsr r5,getw; iobuf
(word in r0)

[getw not available in C]

DESCRIPTION

These routines provide a buffered input facility. Iobuf is the address of a 518(10) byte buffer area whose
contents are maintained by these routines. Its format is:

ioptr: .=.+2 / file descriptor
.=.+2 / characters left in buffer
.=.+2 / ptr to next character
.=.+512. / the buffer

Or in C,

struct buf {
int fildes;
int nleft;
char *nextp;
char buffer[512];

};

Fopen may be called initially to open the file. On return, the error bit (c-bit) is set if the open failed. If
fopen is never called, get will read from the standard input file. From C, the value is negative if the open
failed.

Getc returns the next byte from the file in r0. The error bit is set on end of file or a read error. From C, the
character is returned; it is −1 on end-of-file or error.

Getw returns the next word in r0. Getc and getw may be used alternately; there are no odd/even problems.
Getw is not available from C.

Iobuf must be provided by the user; it must be on a word boundary.

To reuse the same buffer for another file, it is sufficient to close the original file and call fopen again.

SEE ALSO

open(II), read(II), putc(III)

DIAGNOSTICS

c-bit set on EOF or error;
from C, negative return indicates error or EOF.

BUGS

- 1 -



-

GETCHAR ( III ) 4/7/73 GETCHAR ( III )

NAME

getchar − read character

SYNOPSIS

getchar( )

DESCRIPTION

Getchar provides the simplest means of reading characters from the standard input for C programs. It re-
turns successive characters until end-of-file, when it returns ‘‘\0’’.

Associated with this routine is an external variable called fin, which is a structure containing a buffer such
as described under getc (III).

Normally input via getchar is unbuffered, but if the file-descriptor (first) word of fin is non-zero, getchar
calls getc with fin as argument. This means that

fin = open(...)

makes getchar return (buffered) input from the opened file; also

fin = dup(0);

causes the standard input to be buffered.

Generally speaking, getchar should be used only for the simplest applications; getc is better when there are
multiple input files.

SEE ALSO

getc (III)

DIAGNOSTICS

Null character returned on EOF or error.

BUGS

−1 should be returned on EOF; null is a legitimate character.

- 1 -



-

GETPW ( III ) 4/7/73 GETPW ( III )

NAME

getpw − get name from UID

SYNOPSIS

getpw(uid, buf)
char *buf;

DESCRIPTION

Getpw searches the password file for the (numerical) uid, and fills in buf with the corresponding line; it re-
turns non-zero if uid could not be found. The line is null-terminated.

FILES

/etc/passwd

SEE ALSO

passwd(V)

DIAGNOSTICS

non-zero return on error.

BUGS

It disturbs buffered input via getchar (III).

- 1 -



-

HMUL ( III ) 4/7/73 HMUL ( III )

NAME

hmul − high-order product

SYNOPSIS

hmul(x, y)

DESCRIPTION

Hmul returns the high-order 16 bits of the product of x and y. (The binary multiplication operator generates
the low-order 16 bits of a product.)

BUGS

- 1 -



-

HYPOT ( III ) 6/12/72 HYPOT ( III )

NAME

hypot − calculate hypotenuse

SYNOPSIS

jsr r5,hypot

DESCRIPTION

The square root of fr0*fr0 + fr1*fr1 is returned in fr0. The calculation is done in such a way that overflow
will not occur unless the answer is not representable in floating point.

DIAGNOSTICS

The c-bit is set if the result cannot be represented.

BUGS

- 1 -



-

IERROR ( III ) 10/29/73 IERROR ( III )

NAME

ierror − catch Fortran errors

SYNOPSIS

if ( ierror ( errno ) .ne. 0 ) goto label

DESCRIPTION

Ierror provides a way of detecting errors during the running of a Fortran program. Its argument is a run-
time error number such as enumerated in fc (I).

When ierror is called, it returns a 0 value; thus the goto statement in the synopsis is not executed. Howev-
er, the routine stores inside itself the call point and invocation level. If and when the indicated error occurs,
a return is simulated from ierror with a non-zero value; thus the goto (or other statement) is executed. It is
a ghastly error to call ierror from a subroutine which has already returned when the error occurs.

This routine is essentially tailored to catching end-of-file situations. Typically it is called just before the
start of the loop which reads the input file, and the goto jumps to a graceful termination of the program.

There is a limit of 5 on the number of different error numbers which can be caught.

SEE ALSO

fc (I)

BUGS

There is no way to ignore errors.

- 1 -



-

LDIV ( III ) 5/7/73 LDIV ( III )

NAME

ldiv − long division

SYNOPSIS

ldiv(hidividend, lodividend, divisor)

lrem(hidividend, lodividend, divisor)

DESCRIPTION

The concatenation of the signed 16-bit hidividend and the unsigned 16-bit lodividend is divided by divisor.
The 16-bit signed quotient is returned by ldiv and the 16-bit signed remainder is returned by lrem. Divide
check and erroneous results will occur unless the magnitude of the divisor is greater than that of the high-
order dividend.

An integer division of an unsigned dividend by a signed divisor may be accomplished by

quo = ldiv(0, dividend, divisor);

and similarly for the remainder operation.

Often both the quotient and the remainder are wanted. Therefore ldiv leaves a remainder in the external cell
ldivr.

BUGS

No divide check check.

- 1 -



-

LOG ( III ) 4/30/72 LOG ( III )

NAME

log − natural logarithm

SYNOPSIS

jsr r5,log

double log(x)
double x;

DESCRIPTION

The natural logarithm of fr0 is returned in fr0. From C, the natural logarithm of x is returned.

DIAGNOSTICS

The error bit (c-bit) is set if the input argument is less than or equal to zero and the result is a negative num-
ber very large in magnitude. From C, there is no error indication.

BUGS

- 1 -



-

MESG ( III ) 3/15/72 MESG ( III )

NAME

mesg − write message on typewriter

SYNOPSIS

jsr r5,mesg; <Now is the time\0>; .even

DESCRIPTION

Mesg writes the string immediately following its call onto the standard output file. The string must be ter-
minated by an ASCII NULL byte.

BUGS

- 1 -



-

NARGS ( III ) 5/10/73 NARGS ( III )

NAME

nargs − argument count

SYNOPSIS

nargs( )

DESCRIPTION

Nargs returns the number of actual parameters supplied by the caller of the routine which calls nargs.

The argument count is accurate only when none of the actual parameters is float or double. Such parame-
ters count as four arguments instead of one.

BUGS

As indicated.

- 1 -



-

NLIST ( III ) 6/12/72 NLIST ( III )

NAME

nlist − get entries from name list

SYNOPSIS

jsrr5,nlist; file; list
...

file: <file name\0>; .even
list: <name1xxx>; type1; value1

<name2xxx>; type2; value2
...
0

nlist(filename, nl)
char *filename;
struct {

char name[8];
int type;
int value;

} nl[ ];

DESCRIPTION

Nlist examines the name list in the given executable output file and selectively extracts a list of values. The
name list consists of a list of 8-character names (null padded) each followed by two words. The list is ter-
minated with a null name. Each name is looked up in the name list of the file. If the name is found, the
type and value of the name are placed in the two words following the name. If the name is not found, the
type entry is set to −1.

This subroutine is useful for examining the system name list kept in the file /usr/sys/unix. In this way pro-
grams can obtain system addresses that are up to date.

SEE ALSO

a.out(V)

DIAGNOSTICS

All type entries are set to −1 if the file cannot be found or if it is not a valid namelist.

BUGS

- 1 -



-

PERROR ( III ) 11/5/73 PERROR ( III )

NAME

perror − system error messages

SYNOPSIS

perror(s)
char *s;

int sys nerr;
char *sys errlist[];

int errno;

DESCRIPTION

Perror produces a short error message describing the last error encountered during a call to the system from
a C program. First the argument string s is printed, then a colon, then the message and a new-line. Most
usefully, the argument string is the name of the program which incurred the error. The error number is tak-
en from the external variable errno, which is set when errors occur but not cleared when non-erroneous
calls are made.

To simplify variant formatting of messages, the vector of message strings sys errlist is provided; errno can
be used as an index in this table to get the message string without the newline. Sys nerr is the largest mes-
sage number provided for in the table; it should be checked because new error codes may be added to the
system before they are added to the table.

SEE ALSO

Introduction to System Calls

BUGS

- 1 -



-

POW ( III ) 4/30/73 POW ( III )

NAME

pow − floating exponentiation

SYNOPSIS

movf x,fr0
movf y,fr1
jsr pc,pow

double pow(x,y)
double x, y;

DESCRIPTION

Pow returns the value of x
y

(in fr0). Pow(0, y) is 0 for any y. Pow(−x, y) returns a result only if y is an inte-
ger.

SEE ALSO

exp(III), log(III)

DIAGNOSTICS

The carry bit is set on return in case of overflow, pow(0, 0), or pow(−x, y) for non-integral y. From C there
is no diagnostic.

BUGS

- 1 -



-

PRINTF ( III ) 9/17/73 PRINTF ( III )

NAME

printf − formatted print

SYNOPSIS

printf(format, arg
1
, ...);

char *format;

DESCRIPTION

Printf converts, formats, and prints its arguments after the first under control of the first argument. The first
argument is a character string which contains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each of which causes conversion and printing of
the next successive argument to printf.

Each conversion specification is introduced by the character %. Following the %, there may be

− an optional minus sign ‘−’ which specifies left adjustment of the converted argument in the indicat-
ed field;

− an optional digit string specifying a field width; if the converted argument has fewer characters than
the field width it will be blank-padded on the left (or right, if the left-adjustment indicator has been
given) to make up the field width;

− an optional period ‘‘.’’ which serves to separate the field width from the next digit string;

− an optional digit string (precision) which specifies the number of digits to appear after the decimal
point, for e- and f-conversion, or the maximum number of characters to be printed from a string;

− a character which indicates the type of conversion to be applied.

The conversion characters and their meanings are

d The argument is converted to decimal notation.

o The argument is converted to octal notation. ‘‘0’’ will always appear as the first digit.

f The argument is converted to decimal notation in the style ‘‘[−]ddd.ddd’’ where the number of d’s
after the decimal point is equal to the precision specification for the argument. If the precision is
missing, 6 digits are given; if the precision is explicitly 0, no digits and no decimal point are printed.
The argument should be float or double.

e The argument is converted in the style ‘‘[−]d.ddde±dd’’ where there is one digit before the decimal
point and the number after is equal to the precision specification for the argument; when the preci-
sion is missing, 6 digits are produced. The argument should be a float or double quantity.

c The argument character or character-pair is printed if non-null.

s The argument is taken to be a string (character pointer) and characters from the string are printed
until a null character or until the number of characters indicated by the precision specification is
reached; however if the precision is 0 or missing all characters up to a null are printed.

l The argument is taken to be an unsigned integer which is converted to decimal and printed (the re-
sult will be in the range 0 to 65535).

If no recognizable character appears after the %, that character is printed; thus % may be printed by use of
the string %%. In no case does a non-existent or small field width cause truncation of a field; padding
takes place only if the specified field width exceeds the actual width. Characters generated by printf are
printed by calling putchar.

SEE ALSO

putchar (III)

BUGS

Very wide fields (>128 characters) fail.

- 1 -



-

PUTC ( III ) 6/12/72 PUTC ( III )

NAME

putc − buffered output

SYNOPSIS

mov $filename,r0
jsr r5,fcreat; iobuf

fcreat(file, iobuf)
char *file;
struct buf *iobuf;

(get byte in r0)
jsr r5,putc; iobuf

putc(c, iobuf)
int c;
struct buf *iobuf;

(get word in r0)
jsr r5,putw; iobuf

[putw not available from C]

jsr r5,flush; iobuf

fflush(iobuf)
struct buf *iobuf;

DESCRIPTION

Fcreat creates the given file (mode 666) and sets up the buffer iobuf (size 518 bytes); putc and putw write a
byte or word respectively onto the file; flush forces the contents of the buffer to be written, but does not
close the file. The format of the buffer is:

iobuf: .=.+2 / file descriptor
.=.+2 / characters unused in buffer
.=.+2 / ptr to next free character
.=.+512. / buffer

Or in C,

struct buf {
int fildes;
int nunused;
char *nxtfree;
char buff[512];

};

Fcreat sets the error bit (c-bit) if the file creation failed (from C, returns −1); none of the other routines re-
turns error information.

Before terminating, a program should call flush to force out the last of the output (fflush from C).

The user must supply iobuf, which should begin on a word boundary.

To write a new file using the same buffer, it suffices to call [f]flush, close the file, and call fcreat again.

SEE ALSO

creat(II), write(II), getc(III)

DIAGNOSTICS

error bit possible on fcreat call.

BUGS

- 1 -



-

PUTCHAR ( III ) 5/10/73 PUTCHAR ( III )

NAME

putchar − write character

SYNOPSIS

putchar(ch)

flush( )

DESCRIPTION

Putchar writes out its argument and returns it unchanged. The low-order byte of the argument is always
written; the high-order byte is written only if it is non-null. Unless other arrangements have been made,
putchar writes in unbuffered fashion on the standard output file.

Associated with this routine is an external variable fout which has the structure of a buffer discussed under
putc (III). If the file descriptor part of this structure (first word) is not 1, output via putchar is buffered. To
achieve buffered output one may say, for example,

fout = dup(1); or
fout = fcreat(...);

In such a case flush must be called before the program terminates in order to flush out the buffered output.
Flush may be called at any time.

SEE ALSO

putc(III)

BUGS

The fout notion is kludgy.

- 1 -



-

QSORT ( III ) 6/12/72 QSORT ( III )

NAME

qsort − quicker sort

SYNOPSIS

(end+1 of data in r2)
(element width in r3)
jsr pc,qsort

qsort(base, nel, width, compar)
char *base;
int (*compar)( );

DESCRIPTION

Qsort is an implementation of the quicker-sort algorithm. The assembly-language version is designed to
sort equal length elements. Registers r1 and r2 delimit the region of core containing the array of byte
strings to be sorted: r1 points to the start of the first string, r2 to the first location above the last string. Reg-
ister r3 contains the length of each string. r2−r1 should be a multiple of r3. On return, r0, r1, r2, r3 are de-
stroyed.

The routine compar (q.v.) is called to compare elements and may be replaced by the user.

The C version has somewhat different arguments and the user must supply a comparison routine. The first
argument is to the base of the data; the second is the number of elements; the third is the width of an ele-
ment in bytes; the last is the name of the comparison routine. It is called with two arguments which are
pointers to the elements being compared. The routine must return a negative integer if the first element is to
be considered less than the second, a positive integer if the second element is smaller than the first, and 0 if
the elements are equal.

SEE ALSO

compar (III)

BUGS

- 1 -



-

RAND ( III ) 1/15/73 RAND ( III )

NAME

rand − random number generator

SYNOPSIS

(seed in r0)
jsr pc,srand /to initialize

jsr pc,rand /to get a random number

srand(seed)
int seed;

rand( )

DESCRIPTION

Rand uses a multiplicative congruential random number generator to return successive pseudo-random
numbers (in r0) in the range from 1 to 2

15−1.

The generator is reinitialized by calling srand with 1 as argument (in r0). It can be set to a random starting
point by calling srand with whatever you like as argument, for example the low-order word of the time.

WARNING

The author of this routine has been writing random-number generators for many years and has never been
known to write one that worked.

BUGS

The low-order bits are not very random.

- 1 -



-

RESET ( III ) 5/10/73 RESET ( III )

NAME

reset − execute non-local goto

SYNOPSIS

setexit( )

reset( )

DESCRIPTION

These routines are useful for dealing with errors discovered in a low-level subroutine of a program.

Setexit is typically called just at the start of the main loop of a processing program. It stores certain param-
eters such as the call point and the stack level.

Reset is typically called after diagnosing an error in some subprocedure called from the main loop. When
reset is called, it pops the stack appropriately and generates a non-local return from the last call to setexit.

It is erroneous, and generally disastrous, to call reset unless setexit has been called in a routine which is an
ancestor of reset.

BUGS

- 1 -



-

SETFIL ( III ) 10/29/73 SETFIL ( III )

NAME

setfil − specify Fortran file name

SYNOPSIS

call setfil ( unit, hollerith-string )

DESCRIPTION

Setfil provides a primitive way to associate an integer I/O unit number with a file named by the hollerith-
string. The end of the file name is indicated by a blank. Subsequent I/O on this unit number will refer to
file whose name is specified by the string.

Setfil should be called only before any I/O has been done on the unit, or just after doing a rewind or end-
file. It is ineffective for unit numbers 5 and 6.

SEE ALSO

fc (I)

BUGS

There is still no way to receive a file name or other argument from the command line. Also, the exclusion
of units 5 and 6 is unwarranted.

- 1 -



-

SIN ( III ) 3/15/72 SIN ( III )

NAME

sin − sine, cosine

SYNOPSIS

jsr r5,sin (cos)

double sin(x)
double x;

double cos(x)
double x;

DESCRIPTION

The sine (cosine) of fr0 (resp. x), measured in radians, is returned (in fr0).

The magnitude of the argument should be checked by the caller to make sure the result is meaningful.

BUGS

- 1 -



-

SQRT ( III ) 3/15/72 SQRT ( III )

NAME

sqrt − square root function

SYNOPSIS

jsr r5,sqrt

double sqrt(x)
double x;

DESCRIPTION

The square root of fr0 (resp. x) is returned (in fr0).

DIAGNOSTICS

The c-bit is set on negative arguments and 0 is returned. There is no error return for C programs.

BUGS

No error return from C.

- 1 -



-

SWITCH ( III ) 3/15/72 SWITCH ( III )

NAME

switch − switch on value

SYNOPSIS

(switch value in r0)
jsrr5,switch; swtab
(not-found return)
...

swtab: val1; lab1;
...
valn;labn
..; 0

DESCRIPTION

Switch compares the value of r0 against each of the val
i
; if a match is found, control is transferred to the

corresponding lab
i

(after popping the stack once). If no match has been found by the time a null lab
i

oc-
curs, switch returns.

BUGS

- 1 -



-

TTYN ( III ) 1/15/73 TTYN ( III )

NAME

ttyn − return name of current typewriter

SYNOPSIS

jsr pc,ttyn

ttyn(file)

DESCRIPTION

Ttyn hunts up the last character of the name of the typewriter which is the standard input (from as) or is
specified by the argument file descriptor (from C). If n is returned, the typewriter name is then ‘‘/dev/ttyn’’.

x is returned if the indicated file does not correspond to a typewriter.

BUGS

- 1 -



-

VT ( III ) 6/4/73 VT ( III )

NAME

vt − display (vt01) interface

SYNOPSIS

openvt()

erase()

label(s)
char s[ ];

line(x,y)

circle(x,y,r)

arc(x,y,x0,y0,x1,y1)

dot(x,y,dx,n,pattern)
int pattern[ ];

move(x,y)

DESCRIPTION

C interface routines to perform similarly named functions described in vt(IV). Openvt must be used before
any of the others to open the storage scope for writing.

FILES

/dev/vt0, found in /lib/libp.a

SEE ALSO

vt (IV)

BUGS

- 1 -



-

CAT ( IV )  10/27/73 CAT ( IV )

NAME

cat − phototypesetter interface

DESCRIPTION

Cat provides the interface to a Graphic Systems C/A/T phototypesetter. Bytes written on the file specify
font, size, and other control information as well as the characters to be flashed. The coding will not be de-
scribed here.

Only one process may have this file open at a time. It is write-only.

FILES

/dev/cat

SEE ALSO

troff (I), Graphic Systems specification (available on request)

BUGS

- 1 -



-

DA ( IV )  10/28/73 DA ( IV )

NAME

da − voice response unit

DESCRIPTION

Bytes written on this file control a Cognitronics optical drum voice response unit which can generate up to
31 fixed half-second utterances. Bytes read correspond to Touch-Tone® signals received via a 403 dataset.

The specifics of the interface will not be described. Consult M. E. Lesk for more information.

FILES

/dev/da

BUGS

- 1 -



-

DC ( IV ) 8/22/73 DC ( IV )

NAME

dc − DC-11 communications interface

DESCRIPTION

The special files /dev/tty0, /dev/tty1, ... refer to the DC11 asynchronous communications interfaces. At the
moment there are 12 of them, but the number is subject to change.

When one of these files is opened, it causes the process to wait until a connection is established. In practice
user’s programs seldom open these files; they are opened by init and become a user’s input and output file.
The very first typewriter file open in a process becomes the control typewriter for that process. The control
typewriter plays a special role in handling quit or interrupt signals, as discussed below. The control type-
writer is inherited by a child process during a fork.

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters may be
typed at any time, even while output is occurring, and are only lost when the system’s character input buf-
fers become completely choked, which is rare, or when the user has accumulated the maximum allowed
number of input characters which have not yet been read by some program. Currently this limit is 256
characters. When the input limit is reached all the saved characters are thrown away without notice.

When first opened, the interface mode is 150 baud; either parity accepted; 10 bits/character (one stop bit);
and newline action character. The system delays transmission after sending certain function characters.
Delays for horizontal tab, newline, and form feed are calculated for the Teletype Model 37; the delay for
carriage return is calculated for the GE TermiNet 300. Most of these operating states can be changed by us-
ing the system call stty(II). In particular the following hardware states are program settable independently
for input and output (see DC11 manual): 134.5, 150, 300, or 1200 baud; one or two stop bits on output; and
5, 6, 7, or 8 data bits/character. In addition, the following software modes can be invoked: acceptance of
ev en parity, odd parity, or both; a raw mode in which all characters may be read one at a time; a carriage re-
turn (CR) mode in which CR is mapped into newline on input and either CR or line feed (LF) cause echo-
ing of the sequence LF-CR; mapping of upper case letters into lower case; suppression of echoing; suppres-
sion of delays after function characters; and the printing of tabs as spaces. See getty(VII) for the way that
terminal speed and type are detected.

Normally, typewriter input is processed in units of lines. This means that a program attempting to read will
be suspended until an entire line has been typed. Also, no matter how many characters are requested in the
read call, at most one line will be returned. It is not however necessary to read a whole line at once; any
number of characters may be requested in a read, even one, without losing information.

During input, erase and kill processing is normally done. The character ‘#’ erases the last character typed,
except that it will not erase beyond the beginning of a line or an EOT. The character ‘@’ kills the entire
line up to the point where it was typed, but not beyond an EOT. Both these characters operate on a key-
stroke basis independently of any backspacing or tabbing that may have been done. Either ‘@’ or ‘#’ may
be entered literally by preceding it by ‘\’; the erase or kill character remains, but the ‘\’ disappears.

In upper-case mode, all upper-case letters are mapped into the corresponding lower-case letter. The upper-
case letter may be generated by preceding it by ‘\’. In addition, the following escape sequences are generat-
ed on output and accepted on input:

for use
` \´
 \!
˜ \ˆ
{ \(
} \)

It is possible to use raw mode in which the program reading is awakened on each character. In raw mode,
no erase or kill processing is done; and the EOT, quit and interrupt characters are not treated specially.

The ASCII EOT character may be used to generate an end of file from a typewriter. When an EOT is re-
ceived, all the characters waiting to be read are immediately passed to the program, without waiting for a
new-line. Thus if there are no characters waiting, which is to say the EOT occurred at the beginning of a
line, zero characters will be passed back, and this is the standard end-of-file signal. The EOT is not passed
on except in raw mode.

- 1 -



-

DC ( IV ) 8/22/73 DC ( IV )

When the carrier signal from the dataset drops (usually because the user has hung up his terminal) a hangup
signal is sent to all processes with the typewriter as control typewriter. Unless other arrangements have
been made, this signal causes the processes to terminate. If the hangup signal is ignored, any read returns
with an end-of-file indication. Thus programs which read a typewriter and test for end-of-file on their input
can terminate appropriately when hung up on.

Tw o characters have a special meaning when typed. The ASCII DEL character (sometimes called ‘rubout’)
is not passed to a program but generates an interrupt signal which is sent to all processes with the associat-
ed control typewriter. Normally each such process is forced to terminate, but arrangements may be made
either to ignore the signal or to reveiv e a simulated trap to an agreed-upon location. See signal (II).

The ASCII character FS generates the quit signal. Its treatment is identical to the interrupt signal except
that unless a receiving process has made other arrangements it will not only be terminated but a core image
file will be generated. See signal (II).

Output is prosaic compared to input. When one or more characters are written, they are actually transmit-
ted to the terminal as soon as previously-written characters have finished typing. Input characters are
echoed by putting them in the output queue as they arrive. When a process produces characters more rapid-
ly than they can be typed, it will be suspended when its output queue exceeds some limit. When the queue
has drained down to some threshold the program is resumed. Even-parity is always generated on output.
The EOT character is not transmitted (except in raw mode) to prevent terminals which respond to it from
hanging up.

FILES

/dev/tty[01234567abcd] 113B Dataphones

SEE ALSO

kl (IV), getty (VII), stty (I, II), gtty (I, II), signal (II)

BUGS

- 2 -



-

DN ( IV ) 8/24/73 DN ( IV )

NAME

dn − dn11 ACU interface

DESCRIPTION

The dn? files are write-only. The permissible codes are:

0-9 dial 0-9
: dial *
; dial #
= end-of-number

The entire telephone number must be presented in a single write system call.

It is recommended that an end-of-number code be given even though only one of the ACU’s (113C) actual-
ly requires it.

FILES

/dev/dn0 connected to 801 with dp0
/dev/dn1 connected to 113C with ttyc
/dev/dn2 not currently connected

SEE ALSO

dp(IV), dc(IV), write(II)

BUGS

It needs a delay character to handle second dial tone.

- 1 -



-

DP ( IV ) 8/24/73 DP ( IV )

NAME

dp − dp11 201 data-phone interface

DESCRIPTION

The dp0 file is a 201 data-phone interface. Read and write calls to dp0 are limited to a maximum of 512
bytes. Each write call is sent as a single record. Seven bits from each byte are written along with an eighth
odd parity bit. The sync must be user supplied. Each read call returns characters received from a single
record. Seven bits are returned unaltered; the eighth bit is set if the byte was not received in odd parity. A
10 second time out is set and a zero-byte record is returned if nothing is received in that time.

FILES

/dev/dp0

SEE ALSO

dn(IV), gerts(III)

BUGS

- 1 -



-

KL ( IV ) 8/24/73 KL ( IV )

NAME

kl − KL-11/TTY-33 console typewriter

DESCRIPTION

Tty (as distinct from tty? ) refers to the console typewriter hard-wired to the PDP-11 via a KL-11 interface.
The disciplines involved in dealing with tty are identical to those for tty? and section DC(I) should be con-
sulted. The following differences are salient:

The system calls stty and gtty apply, and the bits in the mode word have the same meanings, but the speed-
select word is ignored. The quit signal is generated by the key marked ‘alt mode.’

By appropriate console switch settings, it is possible to cause UNIX to come up as a single-user system
with I/O on this device.

FILES

/dev/tty
/dev/tty8 synonym for /dev/tty
/dev/tty9 second console

SEE ALSO

dc(IV), init(VII)

BUGS

- 1 -



-

MEM ( IV ) 8/24/73 MEM ( IV )

NAME

mem − core memory

DESCRIPTION

Mem is a special file that is an image of the core memory of the computer. It may be used, for example, to
examine, and even to patch the system using the debugger.

A memory address is an 18-bit quantity which is used directly as a UNIBUS address. References to non-
existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read-only or write-on-
ly bits are present.

FILES

/dev/mem

BUGS

There should be another mem file that looks at core using the system’s address map.

- 1 -



-

PC ( IV ) 10/15/73 PC ( IV )

NAME

pc − PC-11 paper tape reader/punch

DESCRIPTION

Ppt refers to the PC-11 paper tape reader or punch, depending on whether it is read or written.

When ppt is opened for writing, a 100-character leader is punched. Thereafter each byte written is punched
on the tape. No editing of the characters is performed. When the file is closed, a 100-character trailer is
punched.

When ppt is opened for reading, the process waits until tape is placed in the reader and the reader is on-line.
Then requests to read cause the characters read to be passed back to the program, again without any editing.
This means that several null leader characters will usually appear at the beginning of the file. Likewise sev-
eral nulls are likely to appear at the end. End-of-file is generated when the tape runs out.

Seek calls for this file are meaningless.

FILES

/dev/ppt

BUGS

- 1 -



-

RF ( IV ) 10/15/73 RF ( IV )

NAME

rf − RF11/RS11 fixed-head disk file

DESCRIPTION

This file refers to the concatenation of all RS-11 disks.

Each disk contains 1024 256-word blocks. The length of the combined RF file is 1024×(minor+1) blocks.
That is minor device zero is 1024 blocks long; minor device one is 2048, etc.

FILES

/dev/rf0

BUGS

- 1 -



-

RK ( IV ) 10/15/73 RK ( IV )

NAME

rk − RK-11/RK03 (or RK05) disk

DESCRIPTION

Rk? refers to an entire RK03 disk as a single sequentially-addressed file. Its 256-word blocks are num-
bered 0 to 4871.

Drive numbers (minor devices) of eight and greater are treated specially. Drive 8+x is the x+1 way inter-
leaving of devices rk0 to rkx. Thus blocks on rk10 are distributed alternately among rk0, rk1, and rk2.

FILES

/dev/rk?

BUGS

Care should be taken in using the interleaved files. First, the same drive should not be accessed simultane-
ously using the ordinary name and as part of an interleaved file, because the same physical blocks have in
effect two different names; this fools the system’s buffering strategy. Second, the combined files cannot be
used for swapping.

- 1 -



-

RP ( IV ) 10/15/73 RP ( IV )

NAME

rp − RP-11/RP03 moving-head disk

DESCRIPTION

The files rp0 ... rp7 refer to sections of RP disk drive 0. The files rp8 ... rp15 refer to drive 1 etc. This is
done since the size of a full RP drive is 81200 blocks and internally the system is only capable of address-
ing 65536 blocks. Also since the disk is so large, this allows it to be broken up into more manageable
pieces.

The origin and size of the pseudo-disks on each drive are as follows:

disk start length
0 0 40600
1 40600 40600
2 0 3200
3 3200 39000
4 42200 39000
5-7 unassigned

FILES

/dev/rp?

BUGS

- 1 -



-

TC ( IV ) 10/15/73 TC ( IV )

NAME

tc − TC-11/TU56 DECtape

DESCRIPTION

The files tap0 ... tap7 refer to the TC-11/TU56 DECtape drives 0 to 7.

The 256-word blocks on a standard DECtape are numbered 0 to 577.

FILES

/dev/tap?

SEE ALSO

tp(I)

BUGS

Since reading is synchronous, only one block is picked up per tape reverse.

- 1 -



-

TIU ( IV ) 10/28/73 TIU ( IV )

NAME

tiu − Spider interface

DESCRIPTION

Spider is a fast digital switching network. Tiu is a directory which contains files each referring to a Spider
control or data channel. The file /dev/tiu/dn refers to data channel n, likewise /dev/tiu/cn refers to control
channel n.

The precise nature of the UNIX interface has not been defined yet.

FILES

/dev/tiu/d?, /dev/tiu/c?

BUGS

- 1 -



-

TM ( IV ) 10/15/73 TM ( IV )

NAME

tm − TM-11/TU-10 magtape interface

DESCRIPTION

The files mt0, ..., mt7 refer to the DEC TU10/TM11 magtape. When opened for reading or writing, the
magtape is rewound. A tape consists of a series of 512 byte records terminated by an end-of-file. When the
magtape is closed after writing, an end-of-file is written.

The magtape can only be opened once at any instant.

FILES

/dev/mt?

SEE ALSO

tp(I)

BUGS

If you hit the EOF mark or get other non-data errors it refuses to do anything more until closed. There has
to be some reasonable way to deal with multi-file tapes.

- 1 -



-

VS ( IV ) 10/28/73 VS ( IV )

NAME

vs − voice synthesizer interface

DESCRIPTION

Bytes written on vs drive a Federal Screw Works Votrax® voice synthesizer. The upper two bits encode an
inflection, the other 6 specify a phoneme. The code is given in section vs (VII).

Touch-Tone® signals sent by a caller will be picked up during a read as the ASCII characters
{0123456789#*}.

FILES

/dev/vs

SEE ALSO

speak (I), vs (VII)

BUGS

- 1 -



-

VT ( IV ) 10/22/73 VT ( IV )

NAME

vt − 11/20 (vt01) interface

DESCRIPTION

The file vt0 provides the interface to a PDP 11/20 which runs a VT01A-controlled Tektronix 611 storage
display. The inter-computer interface is a pair of DR-11C word interfaces.

Although the display has essentially only two commands, namely ‘‘erase screen’’ and ‘‘display point’’, the
11/20 program will draw points, lines, and arcs, and print text on the screen. The 11/20 can also type infor-
mation on the attached 33 TTY.

This special file operates in two basic modes. If the first byte written of the file cannot be interpreted as one
of the codes discussed below, the rest of the transmitted information is assumed to ASCII and written on
the screen. The screen has 33 lines (1/2 a standard page). The file simulates a 37 TTY: the control charac-
ters NL, CR, BS, and TAB are interpreted correctly. It also interprets the usual escape sequences for for-
ward and reverse half-line motion and for full-line reverse. Greek is not available yet. Normally, when the
screen is full (i.e. the 34th line is started) the screen is erased before starting a new page. To allow perusal
of the displayed text, it is usual to assert bit 0 of the console switches. This causes the program to pause
before erasing until this bit is lowered.

If the first byte written is recognizable, the display runs in graphic mode. In this case bytes written on the
file are interpreted as display commands. Each command consists of a single byte usually followed by pa-
rameter bytes. Often the parameter bytes represent points in the plotting area. Each point coordinate con-
sists of 2 bytes interpreted as a 2’s complement 16-bit number. The plotting area itself measures
(±03777)×(±03777) (numbers in octal); that is, 12 bits of precision. Attempts to plot points outside the
screen limits are ignored.

The graphic commands follow.

order (1); 1 parameter byte
The parameter indicates a subcommand, possibly followed by subparameter bytes, as follows:

erase (1)
The screen is erased. The program will wait until bit 0 of the console switches is down.

label (3); several subparameter bytes
The following bytes up to a null byte are printed as ASCII text on the screen. The origin
of the text is the last previous point plotted; or the upper left hand of the screen if there
were none.

point (2); 4 parameter bytes
The 4 parameter bytes are taken as a pair of coordinates representing a point to be plotted.

line (3); 8 parameter bytes
The parameter bytes are taken as 2 pairs of coordinates representing the ends of a line segment
which is plotted. Only the portion lying within the screen is displayed.

frame (4); 1 parameter byte
The parameter byte is taken as a number of sixtieths of a second; an externally-available lead is
asserted for that time. Typically the lead is connected to an automatic camera which advances
its film and opens the shutter for the specified time.

circle (5); 6 parameter bytes
The parameter bytes are taken as a coordinate pair representing the origin, and a word repre-
senting the radius of a circle. That portion of the circle which lies within the screen is plotted.

arc (6); 12 parameter bytes
The first 4 parameter bytes are taken to be a coordinate-pair representing the center of a circle.
The next 4 represent a coordinate-pair specifying a point on this circle. The last 4 should rep-
resent another point on the circle. An arc is drawn counter-clockwise from the first circle point
to the second. If the two points are the same, the whole circle is drawn. For the second point,
only the smaller in magnitude of its two coordinates is significant; the other is used only to find
the quadrant of the end of the arc. In any event only points within the screen limits are plotted.

- 1 -



-

VT ( IV ) 10/22/73 VT ( IV )

dot-line (7); at least 6 parameter bytes
The first 4 parameter bytes are taken as a coordinate-pair representing the origin of a dot-line.
The next byte is taken as a signed x-increment. The next byte is an unsigned word-count, with
‘0’ meaning ‘256’. The indicated number of words is picked up. For each bit in each word a
point is plotted which is visible if the bit is ‘1’, invisible if not. High-order bits are plotted
first. Each successive point (or non-point) is offset rightward by the given x-increment.

Asserting bit 3 of the console switches causes the display processor to throw away everything written on it.
This sometimes helps if the display seems to be hung up.

FILES

/dev/vt0

BUGS

- 2 -



-

A.OUT ( V ) 9/9/73 A.OUT ( V )

NAME

a.out − assembler and link editor output

DESCRIPTION

A.out is the output file of the assembler as and the link editor ld. Both programs make a.out executable if
there were no errors and no unresolved external references.

This file has four sections: a header, the program and data text, a symbol table, and relocation bits (in that
order). The last two may be empty if the program was loaded with the ‘‘−s’’ option of ld or if the symbols
and relocation have been removed by strip.

The header always contains 8 words:

1 A magic number (407 or 410(8))
2 The size of the program text segment
3 The size of the initialized portion of the data segment
4 The size of the uninitialized (bss) portion of the data segment
5 The size of the symbol table
6 The entry location (always 0 at present)
7 Unused
8 A flag indicating relocation bits have been suppressed

The sizes of each segment are in bytes but are even. The size of the header is not included in any of the
other sizes.

When a file produced by the assembler or loader is loaded into core for execution, three logical segments
are set up: the text segment, the data segment (with uninitialized data, which starts off as all 0, following
initialized), and a stack. The text segment begins at 0 in the core image; the header is not loaded. If the
magic number (word 0) is 407, it indicates that the text segment is not to be write-protected and shared, so
the data segment is immediately contiguous with the text segment. If the magic number is 410, the data
segment begins at the first 0 mod 8K byte boundary following the text segment, and the text segment is not
writable by the program; if other processes are executing the same file, they will share the text segment.

The stack will occupy the highest possible locations in the core image: from 177776(8) and growing down-
wards. The stack is automatically extended as required. The data segment is only extended as requested by
the break system call.

The start of the text segment in the file is 20(8); the start of the data segment is 20+S
t
(the size of the text)

the start of the relocation information is 20+S
t
+S

d
; the start of the symbol table is 20+2(S

t
+S

d
) if the reloca-

tion information is present, 20+S
t
+S

d
if not.

The symbol table consists of 6-word entries. The first four words contain the ASCII name of the symbol,
null-padded. The next word is a flag indicating the type of symbol. The following values are possible:

00 undefined symbol
01 absolute symbol
02 text segment symbol
03 data segment symbol
37 file name symbol (produced by ld)
04 bss segment symbol
40 undefined external (.globl) symbol
41 absolute external symbol
42 text segment external symbol
43 data segment external symbol
44 bss segment external symbol

Values other than those given above may occur if the user has defined some of his own instructions.

The last word of a symbol table entry contains the value of the symbol.

If the symbol’s type is undefined external, and the value field is non-zero, the symbol is interpreted by the
loader ld as the name of a common region whose size is indicated by the value of the symbol.

- 1 -



-

A.OUT ( V ) 9/9/73 A.OUT ( V )

The value of a word in the text or data portions which is not a reference to an undefined external symbol is
exactly that value which will appear in core when the file is executed. If a word in the text or data portion
involves a reference to an undefined external symbol, as indicated by the relocation bits for that word, then
the value of the word as stored in the file is an offset from the associated external symbol. When the file is
processed by the link editor and the external symbol becomes defined, the value of the symbol will be
added into the word in the file.

If relocation information is present, it amounts to one word per word of program text or initialized data.
There is no relocation information if the ‘‘suppress relocation’’ flag in the header is on.

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associated with the
relocation word:

00 indicates the reference is absolute
02 indicates the reference is to the text segment
04 indicates the reference is to initialized data
06 indicates the reference is to bss (uninitialized data)
10 indicates the reference is to an undefined external symbol.

Bit 0 of the relocation word indicates if on that the reference is relative to the pc (e.g. ‘‘clr x’’); if off, that
the reference is to the actual symbol (e.g., ‘‘clr *$x’’).

The remainder of the relocation word (bits 15-4) contains a symbol number in the case of external refer-
ences, and is unused otherwise. The first symbol is numbered 0, the second 1, etc.

SEE ALSO

as(I), ld(I), strip(I), nm(I)

- 2 -



-

ARCHIVE ( V ) 9/10/73 ARCHIVE ( V )

NAME

ar − archive (library) file format

DESCRIPTION

The archive command ar is used to combine several files into one. Archives are used mainly as libraries to
be searched by the link-editor ld.

A file produced by ar has a magic number at the start, followed by the constituent files, each preceded by a
file header. The magic number is 177555(8) (it was chosen to be unlikely to occur anywhere else). The
header of each file is 16 bytes long:

0-7 file name, null padded on the right
8-11 modification time of the file
12 user ID of file owner
13 file mode
14-15 file size

If the file is an odd number of bytes long, it is padded with a null byte, but the size in the header is correct.

Notice there is no provision for empty areas in an archive file.

SEE ALSO

ar (I), ld (I)

BUGS

Names are only 8 characters, not 14. More important, there isn’t enough room to store the proper mode, so
ar always extracts in mode 666.

- 1 -



-

CORE ( V ) 9/10/73 CORE ( V )

NAME

core − format of core image file

DESCRIPTION

UNIX writes out a core image of a terminated process when any of various errors occur. See signal (II) for
the list of reasons; the most common are memory violations, illegal instructions, bus errors, and user-gener-
ated quit signals. The core image is called ‘‘core’’ and is written in the process’s working directory (pro-
vided it can be; normal access controls apply).

The first 512 bytes of the core image are a copy of the system’s per-user data for the process, including the
registers as they were at the time of the fault. The remainder represents the actual contents of the user’s
core area when the core image was written. At the moment, if the text segment is write-protected and
shared, it is not dumped; otherwise the entire address space is dumped.

The actual format of the information in the first 512 bytes is complicated. A guru will have to be consulted
if enlightenment is required. In general the debugger db (I) should be used to deal with core images.

SEE ALSO

db(I), signal(II)

- 1 -



-

DIRECTORY ( V )  9/10/73 DIRECTORY ( V )

NAME

dir − format of directories

DESCRIPTION

A directory behaves exactly like an ordinary file, save that no user may write into a directory. The fact that
a file is a directory is indicated by a bit in the flag word of its i-node entry. Directory entries are 16 bytes
long. The first word is the i-number of the file represented by the entry, if non-zero; if zero, the entry is
empty.

Bytes 2-15 represent the (14-character) file name, null padded on the right. These bytes are not cleared for
empty slots.

By convention, the first two entries in each directory are for ‘‘.’’ and ‘‘..’’. The first is an entry for the direc-
tory itself. The second is for the parent directory. The meaning of ‘‘..’’ is modified for the root directory of
the master file system and for the root directories of removable file systems. In the first case, there is no
parent, and in the second, the system does not permit off-device references. Therefore in both cases ‘‘..’’
has the same meaning as ‘‘.’’.

SEE ALSO

file system (V)

- 1 -



-

FILE SYSTEM ( V )  9/7/73 FILE SYSTEM ( V )

NAME

fs − format of file system volume

DESCRIPTION

Caution: this information applies only to the latest versions of the UNIX system.

Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a common format for
certain vital information. Every such volume is divided into a certain number of 256 word (512 byte)
blocks. Block 0 is unused and is available to contain a bootstrap program, pack label, or other information.

Block 1 is the super block. Starting from its first word, the format of a super-block is

struct {
int isize;
int fsize;
int nfree;
int free[100];
int ninode;
int inode[100];
char flock;
char ilock;
char fmod;
int time[2];

};

Isize is the number of blocks devoted to the i-list, which starts just after the super-block, in block 2. Fsize
is the first block not potentially available for allocation to a file. This number is unused by the system, but
is used by programs like check (I) to test for bad block numbers. The free list for each volume is main-
tained as follows. The free array contains, in free[1], ... , free[nfree−1], up to 99 numbers of free blocks.
Fr ee[0] is the block number of the head of a chain of blocks constituting the free list. The first word in
each free-chain block is the number (up to 100) of free-block numbers listed in the next 100 words of this
chain member. The first of these 100 blocks is the link to the next member of the chain. To allocate a
block: decrement nfree, and the new block is free[nfree]. If the new block number is 0, there are no blocks
left, so give an error. If nfree became 0, read in the block named by the new block number, replace nfree by
its first word, and copy the block numbers in the next 100 words into the free array. To free a block, check
if nfree is 100; if so, copy nfree and the free array into it, write it out, and set nfree to 0. In any event set
free[nfree] to the freed block’s number and increment nfree.

Ninode is the number of free i-numbers in the inode array. To allocate an i-node: if ninode is greater than 0,
decrement it and return inode[ninode]. If it was 0, read the i-list and place the numbers of all free inodes
(up to 100) into the inode array, then try again. To free an i-node, provided ninode is less than 100, place
its number into inode[ninode] and increment ninode. If ninode is already 100, don’t bother to enter the
freed i-node into any table. This list of i-nodes is only to speed up the allocation process; the information
as to whether the inode is really free or not is maintained in the inode itself.

Flock and ilock are flags maintained in the core copy of the file system while it is mounted and their values
on disk are immaterial. The value of fmod on disk is likewise immaterial; it is used as a flag to indicate that
the super-block has changed and should be copied to the disk during the next periodic update of file system
information.

Time is the last time the super-block of the file system was changed, and is a double-precision representa-
tion of the number of seconds that have elapsed since 0000 Jan. 1 1970 (GMT). During a reboot, the time
of the super-block for the root file system is used to set the system’s idea of the time.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes are 32 bytes long, so 16
of them fit into a block. Therefore, i-node i is located in block (i + 31) / 16, and begins 32

.
((i + 31) (mod

16) bytes from its start. I-node 1 is reserved for the root directory of the file system, but no other i-number
has a built-in meaning. Each i-node represents one file. The format of an i-node is as follows.

struct {
int flags; /* +0: see below */
char nlinks; /* +2: number of links to file */

- 1 -



-

FILE SYSTEM ( V )  9/7/73 FILE SYSTEM ( V )

char uid; /* +3: user ID of owner */
char gid; /* +4: group ID of owner */
char size0; /* +5: high byte of 24-bit size */
int size1; /* +6: low word of 24-bit size */
int addr[8]; /* +8: block numbers or device number */
int actime[2]; /* +24: time of last access */
int modtime[2]; /* +28: time of last modification */

};

The flags are as follows:

100000 i-node is allocated
060000 2-bit file type:

000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.

010000 large file
004000 set user-ID on execution
002000 set group-ID on execution
000400 read (owner)
000200 write (owner)
000100 execute (owner)
000070 read, write, execute (group)
000007 read, write, execute (others)

Special files are recognized by their flags and not by i-number. A block-type special file is basically one
which can potentially be mounted as a file system; a character-type special file cannot, though it is not nec-
essarily character-oriented. For special files the high byte of the first address word specifies the type of de-
vice; the low byte specifies one of several devices of that type. The device type numbers of block and char-
acter special files overlap.

The address words of ordinary files and directories contain the numbers of the blocks in the file (if it is
small) or the numbers of indirect blocks (if the file is large).

Byte number n of a file is accessed as follows. N is divided by 512 to find its logical block number (say b )
in the file. If the file is small (flag 010000 is 0), then b must be less than 8, and the physical block number
is addr[b].

If the file is large, b is divided by 256 to yield i, and addr[i] is the physical block number of the indirect
block. The remainder from the division yields the word in the indirect block which contains the number of
the block for the sought-for byte.

For block b in a file to exist, it is not necessary that all blocks less than b exist. A zero block number either
in the address words of the i-node or in an indirect block indicates that the corresponding block has never
been allocated. Such a missing block reads as if it contained all zero words.

SEE ALSO

check (VIII)

- 2 -



-

PASSWD ( V ) 9/10/73 PASSWD ( V )

NAME

passwd − password file

DESCRIPTION

Passwd contains for each user the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID
GCOS job number and box number
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user’s entry is separated from the next by a colon. The job
and box numbers are separated by a comma. Each user is separated from the next by a new-line. If the
password field is null, no password is demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have general read
permission and can be used, for example, to map numerical user ID’s to names.

SEE ALSO

login(I), crypt(III), passwd(I)

- 1 -



-

TP ( V ) 9/10/73 TP ( V )

NAME

tp − DEC/mag tape formats

DESCRIPTION

The command tp dumps and extracts files to and DECtape and magtape. The formats of these tapes are the
same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See boot procedures (VIII).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape. There are 192
(resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each entry has the following for-
mat:

path name 32 bytes
mode 2 bytes
uid 1 byte
gid 1 byte
unused 1 byte
size 3 bytes
time modified 4 bytes
tape address 2 bytes
unused 16 bytes
check sum 2 bytes

The path name entry is the path name of the file when put on the tape. If the pathname starts with a zero
word, the entry is empty. It is at most 32 bytes long and ends in a null byte. Mode, uid, gid, size and time
modified are the same as described under i-nodes (file system (V)). The tape address is the tape block num-
ber of the start of the contents of the file. Every file starts on a block boundary. The file occupies
(size+511)/512 blocks of continuous tape. The checksum entry has a value such that the sum of the 32
words of the directory entry is zero.

Blocks 25 (resp. 63) on are available for file storage.

A fake entry (see tp(I)) has a size of zero.

SEE ALSO

file system(V), tp(I)

- 1 -



-

UTMP ( V ) 9/10/73 UTMP ( V )

NAME

utmp − user information

DESCRIPTION

This file allows one to discover information about who is currently using UNIX. The file is binary; each
entry is 16(10) bytes long. The first eight bytes contain a user’s login name or are null if the table slot is
unused. The low order byte of the next word contains the last character of a typewriter name. The next two
words contain the user’s login time. The last word is unused.

This file resides in directory /tmp.

SEE ALSO

/etc/init, which maintains the file; who(I), which interprets it.

- 1 -



-

WTMP ( V ) 9/10/73 WTMP ( V )

NAME

wtmp − user login history

DESCRIPTION

This file records all logins and logouts. Its format is exactly like utmp(V) except that a null user name indi-
cates a logout on the associated typewriter, and the typewriter name ‘x’ indicates that UNIX was rebooted
at that point.

Wtmp is maintained by login(I) and init(VII). Neither of these programs creates the file, so if it is removed
record-keeping is turned off.

This file resides in directory /tmp.

SEE ALSO

init(VII), login(I)

- 1 -



-

AZEL ( VI ) 9/22/73 AZEL ( VI )

NAME

azel − obtain satellite predictions

SYNOPSIS

azel satellite ...

DESCRIPTION

Azel predicts, in convenient form, the apparent trajectories of Earth satellites whose orbital elements are
given in the argument files. If a given satellite name cannot be read, an attempt is made to find it in a direc-
tory of satellites maintained by the programs’s author.

For each satellite given the program types its full name, the date, and a sequence of lines each containing a
time, an azimuth, an elevation, a distance, and a visual magnitude. Each such line indicates that: at the in-
dicated time, the satellite may be seen from Murray Hill at the indicated azimuth and elevation, and that its
distance and apparent magnitude are as given. Predictions are printed only when the sky is dark (sun more
than 5 degrees below the horizon) and when the satellite is not eclipsed by the earth’s shadow. Satellites
which have not been seen and verified will not have had their visual magnitude level set correctly.

All times input and output by azel are GMT (Universal Time).

The satellites for which elements are maintained are:

sla, ... sll Skylab A through Skylab L. Skylabs A and B are the laboratory and its rocket respectively; the
remainder are various other objects attendant upon its launch and subsequent activities. A, B,
and probably K have been sighted and verified.

cop Copernicus I. Never verified.

oao Orbiting Astronomical Observatory. Seen and verified.

pag Pageos I. Seen and verified; fairly dim (typically 2nd-3rd magnitude), but elements are ex-
tremely accurate.

exp19 Explorer 19; seen and verified, but quite dim (4th-5th magnitude) and fast-moving.

c103b, c156b, c184b, c206b, c220b, c461b, c500b
Various of the USSR Cosmos series; none seen.

7276a Unnamed (satellite # 72-76A); not seen.

The element files used by azel contain five lines. The first line gives a year, month number, day, hour, and
minute at which the program begins its consideration of the satellite, followed by a number of minutes and
an interval in minutes. If the year, month, and day are 0, they are taken to be the current date (taken to
change at 6 A.M. local time). The output report starts at the indicated epoch and prints the position of the
satellite for the indicated number of minutes at times separated by the indicated interval. This line is ended
by two numbers which specify options to the program governing the completeness of the report; they are
ordinarily both ‘‘1’’. The first option flag suppresses output when the sky is not dark; the second supresses
output when the satellite is eclipsed by the earth’s shadow. The next line of an element file is the full name
of the satellite. The next three are the elements themselves (including certain derivatives of the elements).
The author should be consulted for more information.

FILES

/usr/jfo/el/* − orbital element files

SEE ALSO

sky (VI)

AUTHOR

J. F. Ossanna

BUGS

- 1 -



-

BJ ( VI ) 3/15/72 BJ ( VI )

NAME

bj − the game of black jack

SYNOPSIS

/usr/games/bj

DESCRIPTION

Bj is a serious attempt at simulating the dealer in the game of black jack (or twenty-one) as might be found
in Reno. The following rules apply:

The bet is $2 every hand.

A player ‘natural’ (black jack) pays $3. A dealer natural loses $2. Both dealer and player naturals is
a ‘push’ (no money exchange).

If the dealer has an ace up, the player is allowed to make an ‘insurance’ bet against the chance of a
dealer natural. If this bet is not taken, play resumes as normal. If the bet is taken, it is a side bet
where the player wins $2 if the dealer has a natural and loses $1 if the dealer does not.

If the player is dealt two cards of the same value, he is allowed to ‘double’. He is allowed to play
two hands, each with one of these cards. (The bet is doubled also; $2 on each hand.)

If a dealt hand has a total of ten or eleven, the player may ‘double down’. He may double the bet ($2
to $4) and receive exactly one more card on that hand.

Under normal play, the player may ‘hit’ (draw a card) as long as his total is not over twenty-one. If
the player ‘busts’ (goes over twenty-one), the dealer wins the bet.

When the player ‘stands’ (decides not to hit), the dealer hits until he attains a total of seventeen or
more. If the dealer busts, the player wins the bet.

If both player and dealer stand, the one with the largest total wins. A tie is a push.

The machine deals and keeps score. The following questions will be asked at appropriate times. Each
question is answered by y followed by a new line for ‘yes’, or just new line for ‘no’.

? (means, ‘‘do you want a hit?’’)
Insurance?
Double down?

Every time the deck is shuffled, the dealer so states and the ‘action’ (total bet) and ‘standing’ (total won or
lost) is printed. To exit, hit the interrupt key (DEL) and the action and standing will be printed.

BUGS

Be careful of the random number generator.

- 1 -



-

CAL ( VI ) 11/1/73 CAL ( VI )

NAME

cal − print calendar

SYNOPSIS

cal [ month ] year

DESCRIPTION

Cal will print a calendar for the specified year. If a month is also specified, a calendar just for that month is
printed. Year can be between 1 and 9999. The month is a number between 1 and 12. The calendar pro-
duced is that for England and her colonies.

Try September 1752.

BUGS

The year is always considered to start in January even though this is historically naive.

- 1 -



-

CHESS ( VI ) 11/1/73 CHESS ( VI )

NAME

chess − the game of chess

SYNOPSIS

/usr/games/chess

DESCRIPTION

Chess is a computer program that plays class D chess. Moves may be given either in standard (descriptive)
notation or in algebraic notation. The symbol ‘+’ is used to specify check and is not required; ‘o-o’ and ‘o-
o-o’ specify castling. To play black, type ‘first’; to print the board, type an empty line.

Each move is echoed in the appropriate notation followed by the program’s reply and the elapsed time in
seconds.

FILES

/usr/lib/book opening ‘book’

DIAGNOSTICS

The most cryptic diagnostic is ‘eh?’ which means that the input was syntactically incorrect.

WARNING

Over-use of this program has been known to cause it to go away.

AUTHOR

K. Thompson

BUGS

Pawns may be promoted only to queens.

- 1 -



-

CUBIC ( VI ) 11/1/73 CUBIC ( VI )

NAME

cubic − three dimensional tic-tac-toe

SYNOPSIS

/usr/games/cubic

DESCRIPTION

Cubic plays the game of three dimensional 4×4×4 tic-tac-toe. Moves are given by the three digits (each
1-4) specifying the coordinate of the square to be played.

WARNING

Too much playing of the game will cause it to disappear.

BUGS

- 1 -



-

FA CTOR ( VI )  1/15/73 FACTOR ( VI )

NAME

factor − discover prime factors of a number

SYNOPSIS

factor

DESCRIPTION

When factor is invoked, it types out ‘Enter:’ at you. If you type in a positive number less than 2
56

(about
7.2×10

16
) it will repeat the number back at you and then its prime factors each one printed the proper num-

ber of times. Then it says ‘Enter:’ again. To exit, feed it an EOT or a delete.

Maximum time to factor is proportional to √n and occurs when n is prime. It takes 1 minute to factor a
prime near 10

13
.

DIAGNOSTICS

‘Ouch.’ for input out of range or for garbage input.

BUGS

- 1 -



-

HYPHEN ( VI ) 1/15/73 HYPHEN ( VI )

NAME

hyphen − find hyphenated words

SYNOPSIS

hyphen file ...

DESCRIPTION

It finds all of the words in a document which are hyphenated across lines and prints them back at you in a
convenient format.

If no arguments are given, the standard input is used. Thus hyphen may be used as a filter.

BUGS

Yes, it gets confused, but with no ill effects other than spurious extra output.

- 1 -



-

M6 ( VI ) 11/15/72 M6 ( VI )

NAME

m6 − general purpose macro processor

SYNOPSIS

m6 [ −d arg1 ] [ arg2 [ arg3 ] ]

DESCRIPTION

M6 takes input from file arg2 (or standard input if arg2 is missing) and places output on file arg3 (or stan-
dard output). A working file of definitions, ‘‘m.def ’’, is initialized from file arg1 if that is supplied. M6
differs from the standard [1] in these respects:

#trace:, #source: and #end: are not defined.

#meta,arg1,arg2: transfers the role of metacharacter arg1 to character arg2. If two metacharacters become
identical thereby, the outcome of further processing is not guaranteed. For example, to make [ ]{} play the
roles of #:<> type

\.br [meta,<:>,]:
[meta,[substr,<<>>,1,1;,{]
[meta,[substr,{{>>,2,1;,}]

#del,arg1: deletes the definition of macro arg1.

#save: and #rest: save and restore the definition table together with the current metacharacters on file m.def.

#def,arg1,arg2,arg3: works as in the standard with the extension that an integer may be supplied to arg3 to
cause the new macro to perform the action of a specified builtin before its replacement text is evaluated.
Thus all builtins except #def: can be retrieved even after deletion. Codes for arg3 are:

0 − no function
1,2,3,4,5,6 − gt,eq,ge,lt,ne,le
7,8 − seq,sne
9,10,11,12,13 − add,sub,mpy,div,exp
20 − if
21,22 − def,copy
23 − meta
24 − size
25 − substr
26,27 − go,gobk
28 − del
29 − dnl
30,31 − save,rest

FILES

m.def working file of definitions
/usr/lang/mdir/m6a m6 processor proper (/usr/bin/m6 is only an initializer)
/usr/lang/mdir/m6b default initialization for m.def
/bin/cp used for copying initial value of m.def

SEE ALSO

[1] A. D. Hall, The M6 Macroprocessor, Bell Telephone Laboratories, 1969

DIAGNOSTICS

‘‘err’’ − a bug, an unknown builtin or a bad definition table
‘‘oprd’’−can’t open input or initial definitions
‘‘opwr’’−can’t open output
‘‘ova’’ − overflow of nested arguments
‘‘ovc’’ − overflow of calls
‘‘ovd’’ − overflow of definitions
‘‘Try again’’ − no process available for copying m.def

- 1 -



-

M6 ( VI ) 11/15/72 M6 ( VI )

AUTHOR

M. D. McIlroy

BUGS

Characters in internal tables are stored one per word. They really should be packed to improve capacity.
For want of space (and because of unpacked formats) no file arguments have been provided to #save: or
#rest:, and no check is made on the actual opening of file m.def. Again to save space, garbage collection
makes calls on #save: and #rest: and so overwrites m.def.

Since the program is written in the defunct language B it is currently unavailable. Expressions of interest
may make a C version appear.

- 2 -



-

MAZE ( VI ) 11/1/73 MAZE ( VI )

NAME

maze − generate a maze problem

SYNOPSIS

maze

DESCRIPTION

Maze will ask a few questions and then print out a maze.

BUGS

Some mazes (especially small ones) have no solutions.

- 1 -



-

MOO ( VI ) 11/1/73 MOO ( VI )

NAME

moo − guessing game

SYNOPSIS

/usr/games/moo

DESCRIPTION

Moo is a guessing game imported from England. The computer picks a number consisting of four distinct
decimal digits. The player guesses four distinct digits being scored on each guess. A ‘cow’ is a correct
digit in an incorrect position. A ‘bull’ is a correct digit in a correct position. The game continues until the
player guesses the number (a score of four bulls).

BUGS

Watch out for the random number generator.

- 1 -



-

OV ( VI )  6/12/72 OV ( VI )

NAME

ov − overlay pages

SYNOPSIS

ov [ file ]

DESCRIPTION

Ov is a postprocessor for producing double column formatted text when using nroff(I). Ov literally over-
lays successive pairs of 66-line pages.

If the file argument is missing, the standard input is used. Thus ov may be used as a filter.

SEE ALSO

nroff(I), pr(I)

BUGS

- 1 -



-

PTX ( VI ) 10/15/73 PTX ( VI )

NAME

ptx − permuted index

SYNOPSIS

ptx [ −t ] input [ output ]

DESCRIPTION

Ptx generates a permuted index from file input on file output. It has three phases: the first does the permu-
tation, generating one line for each keyword in an input line. The keyword is rotated to the front. The per-
muted file is then sorted. Finally the sorted lines are rotated so the keyword comes at the middle of the
page.

Input should be edited to remove useless lines. The following words are suppressed: ‘a’, ‘an’, ‘and’, ‘as’,
‘is’, ‘for’, ‘of’, ‘on’, ‘or’, ‘the’, ‘to’, ‘up’.

The optional argument −t causes ptx to prepare its output for the phototypesetter.

The index for this manual was generated using ptx.

FILES

/bin/sort

- 1 -



-

SFS ( VI ) 6/25/73 SFS ( VI )

NAME

sfs − structured file scanner

SYNOPSIS

sfs filename [ − ]

DESCRIPTION

Sfs provides an interactive program for scanning and pactching a structured file. If the second argument is
supplied, the file is block addressed.

Some features of sfs include.
1. It provides interactive and preprogramed operation.
2. It provides expression evaluation (32 bit precision) and branching.
3. It provides the ability to assimulate a large set of heirarchical structure definitions.
4. It provides the ability to locate, to dump, and to patch specific instances of structure in the file. Fur-

thermore, in the dump and patch operations the external form of the structure is selected by the user.
5. It provides the ability to escape to the UNIX command level to allow the use of other UNIX debug-

ging aids.

SEE ALSO

‘‘SFS reference manual’’ (internal memorandum)

BUGS

- 1 -



-

SKY ( VI ) 9/22/73 SKY ( VI )

NAME

sky − obtain ephemerides

SYNOPSIS

sky

DESCRIPTION

Sky predicts the apparent locations of the Sun, the Moon, the planets out to Saturn, stars of magnitude at
least 2.5, and certain other celestial objects including comet Kohoutek and M31. Sky reads the standard in-
put to obtain a GMT time typed on one line with blanks separating year, month number, day, hour, and
minute; if the year is missing the current year is used. If a blank line is typed the current time is used. The
program prints the azimuth, elevation, and magnitude of objects which are above the horizon at the
ephemeris location of Murray Hill at the indicated time.

Placing a ‘‘1’’ input after the minute entry causes the program to print out the Greenwich Sidereal Time at
the indicated moment and to print for each body its right ascension and declination as well as its azimuth
and elevation. Also, instead of the magnitude, the geocentric distance of the body, in units the program
considers convenient, is printed. (For planets the unit is essentially A. U.)

The magnitudes of Solar System bodies are not calculated and are given as 0. The effects of atmospheric
extinction are not included; the mean magnitudes of variable stars are marked with ‘‘*’’.

For all bodies, the program takes into account precession and nutation of the equinox, annual (but not diur-
nal) aberration, diurnal parallax, and the proper motion of stars (but not annual parallax). In no case is re-
fraction included.

The program takes into account perturbations of the Earth due to the Moon, Venus, Mars, and Jupiter. The
expected accuracies are: for the Sun and other stellar bodies a few tenths of seconds of arc; for the Moon
(on which particular care is lavished) likewise a few tenths of seconds. For the Sun, Moon and stars the ac-
curacy is sufficient to predict the circumstances of eclipses and occultations to within a few seconds of
time. The planets may be off by sev eral minutes of arc.

Information about the program may be obtained from its author.

FILES

/usr/lib/startab, /usr/lib/moontab

SEE ALSO

azel (VI)
American Ephemeris and Nautical Almanac, for the appropriate years; also, the Explanatory Supplement to
the American Ephemeris and Nautical Almanac.

AUTHOR

R. Morris

- 1 -



-

SPLINE ( VI ) 10/20/73 SPLINE ( VI )

NAME

spline − interpolate smooth curve

SYNOPSIS

spline [ option ] ...

DESCRIPTION

Spline takes pairs of numbers from the standard input as abcissas and ordinates of a function. It produces a
similar set, which is approximately equally spaced and includes the input set, on the standard output. The
cubic spline output (R. W. Hamming, Numerical Methods for Engineers and Scientists, 2nd ed., 349ff) has
two continuous derivatives, and sufficiently many points to look smooth when plotted, for example by plot
(I).

The following options are recognized, each as a separate argument.

a Supply abscissas automatically (they are missing from the input); spacing is given by the next argu-
ment, or is assumed to be 1 if next argument is not a number.

n Output approximately n points, where n is given by the next argument. (Default n = 100.)

p Make output periodic, i.e. match derivatives at ends. First and last input values should normally
agree.

x Next 1 (or 2) arguments are lower (and upper) x limits.

SEE ALSO

plot(I)

AUTHOR

M. D. McIlroy

BUGS

A limit of 1000 input points is enforced silently.

- 1 -



-

TMG ( VI ) 10/21/72 TMG ( VI )

NAME

tmg − compiler-compiler

SYNOPSIS

tmg name

DESCRIPTION

Tmg produces a translator for the language whose parsing and translation rules are described in file name.t.
The new translator appears in a.out and may be used thus:

a.out input [ output ]

Except in rare cases input must be a randomly addressable file. If no output file is specified, the standard
output file is assumed.

FILES

/sys/tmg/tmgl.o the compiler-compiler
/sys/tmg[abc] libraries
alloc.d table storage

SEE ALSO

A Manual for the Tmg Compiler-writing Language, internal memorandum.

DIAGNOSTICS

Syntactic errors result in "???" followed by the offending line.
Situations such as space overflow with which the Tmg processor or a Tmg-produced processor can not cope
result in a descriptive comment and a dump.

AUTHOR

M. D. McIlroy

BUGS

9.2 footnote 1 is not enforced, causing trouble.
Restrictions (7.) against mixing bundling primitives should be lifted.
Certain hidden reserved words exist: gpar, classtab, trans.
Octal digits include 8=10 and 9=11.

- 1 -



-

TTT ( VI ) 11/1/73 TTT ( VI )

NAME

ttt − tic-tac-toe

SYNOPSIS

/usr/games/ttt

DESCRIPTION

Ttt is the X and O game popular in the first grade. This is a learning program that never makes the same
mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to completely know the game.

FILES

ttt.k learning file

BUGS

- 1 -



-

WUMP ( VI ) 11/25/73 WUMP ( VI )

NAME

wump − hunt the wumpus

SYNOPSIS

/usr/games/wump

DESCRIPTION

Wump plays the game of ‘‘Hunt the Wumpus.’’ A Wumpus is a creature that lives in a cav e with several
rooms connected by tunnels. You wander among the rooms, trying to shoot the Wumpus with an arrow,
meanwhile avoiding being eaten by the Wumpus and falling into Bottomless Pits. There are also Super
Bats which are likely to pick you up and drop you in some random room.

The program asks various questions which you answer one per line; it will give a more detailed description
if you want.

This program is based on one described in People’s Computer Company, 2, 2 (November 1973).

BUGS

It will never replace Space War.

- 1 -



-

YA CC ( VI )  6/6/73 YACC ( VI )

NAME

yacc − yet another compiler-compiler

SYNOPSIS

yacc [ grammar ]

DESCRIPTION

Yacc converts a context-free grammar into a set of tables for a simple automaton which executes an LR(1)
parsing algorithm.

For complete information, see the author.

SEE ALSO

"LR Parsing", by A. V. Aho and S. C. Johnson.

AUTHOR

S. C. Johnson

BUGS

- 1 -



-

ASCII ( VII ) 6/12/72 ASCII ( VII )

NAME

ascii − map of ASCII character set

SYNOPSIS

cat /usr/pub/ascii

DESCRIPTION

Ascii is a map of the ASCII character set, to be printed as needed. It contains:

| 000 nu l | 001 soh | 002 s t x | 003 e t x  |  004 eo t  | 005 enq | 006 ack | 007 be l  |
| 010 bs | 011 h t | 012 n l | 013 v t | 014 np | 015 c r | 016 so | 017 s i |
| 020 d l e  | 021 dc1 |  022 dc2 |  023 dc3 |  024 dc4 |  025 nak |  026 syn | 027 e t b |
| 030 can |  031 em | 032 sub | 033 e s c  | 034 f s | 035 gs | 036 r s | 037 us |
| 040 sp | 041 ! | 042 " | 043 # | 044 $ | 045 % | 046 & | 047 ´ |
| 050 ( | 051 ) | 052 * | 053 + | 054 , | 055 − | 056 . | 057 / |
| 060 0 | 061 1 | 062 2 | 063 3 | 064 4 | 065 5 | 066 6 | 067 7 |
| 070 8 | 071 9 | 072 : | 073 ; | 074 < | 075 = | 076 > | 077 ? |
| 100 @ | 101 A | 102 B | 103 C | 104 D | 105 E | 106 F | 107 G |
| 110 H | 111 I | 112 J | 113 K | 114 L | 115 M | 116 N | 117 O |
| 120 P | 121 Q | 122 R | 123 S | 124 T | 125 U | 126 V | 127 W |
| 130 X | 131 Y | 132 Z | 133 [ | 134 \ | 135 ] | 136 ˆ | 137 |
| 140 ` | 141 a | 142 b | 143 c | 144 d | 145 e | 146 f | 147 g |
| 150 h | 151 i | 152 j | 153 k | 154 l | 155 m | 156 n | 157 o |
| 160 p | 161 q | 162 r | 163 s | 164 t | 165 u | 166 v | 167 w |
| 170 x | 171 y | 172 z | 173 { | 174 | | 175 } | 176 ˜ | 177 de l  |

FILES

found in /usr/pub

- 1 -



-

DPD ( VII ) 3/15/72 DPD ( VII )

NAME

dpd − spawn data phone daemon

SYNOPSIS

/etc/dpd

DESCRIPTION

Dpd is the 201 data phone daemon. It is designed to submit jobs to the Honeywell 6070 computer via the
GRTS interface.

Dpd uses the directory /usr/dpd. The file lock in that directory is used to prevent two daemons from be-
coming active. After the daemon has successfully set the lock, it forks and the main path exits, thus spawn-
ing the daemon. The directory is scanned for files beginning with df. Each such file is submitted as a job.
Each line of a job file must begin with a key character to specify what to do with the remainder of the line.

S directs dpd to generate a unique snumb card. This card is generated by incrementing the first word of
the file /usr/dpd/snumb and converting that to three-digit octal concatenated with the station ID.

L specifies that the remainder of the line is to be sent as a literal.

B specifies that the rest of the line is a file name. That file is to be sent as binary cards.

F is the same as B except a form feed is prepended to the file.

U specifies that the rest of the line is a file name. After the job has been transmitted, the file is un-
linked.

Any error encountered will cause the daemon to drop the call, wait up to 20 minutes and start over. This
means that an improperly constructed df file may cause the same job to be submitted every 20 minutes.

While waiting, the daemon checks to see that the lock file still exists. If it is gone, the daemon will exit.

FILES

/dev/dn0, /dev/dp0, /usr/dpd/*

SEE ALSO

opr(I)

- 1 -



-

GETTY ( VII ) 9/19/73 GETTY ( VII )

NAME

getty − set typewriter mode

SYNOPSIS

/etc/getty

DESCRIPTION

Getty is invoked by init (VII) immediately after a typewriter is opened following a dial-up. The user’s login
name is read and the login(I) command is called with this name as an argument. While reading this name
getty attempts to adapt the system to the speed and type of terminal being used.

Getty initially sets the speed of the interface to 150 baud, specifies that raw mode is to be used (break on
ev ery character), that echo is to be suppressed, and either parity allowed. It types the ‘‘login:’’ message
(which includes the characters which put the 37 Teletype terminal into full-duplex and unlock its key-
board). Then the user’s name is read, a character at a time. If a null character is received, it is assumed to
be the result of the user pushing the ‘‘break’’ (‘‘interrupt’’) key. The speed is then changed to 300 baud and
the ‘‘login:’’ is typed again, this time with the appropriate sequence which puts a GE TermiNet 300 into
full-duplex. This sequence is acceptable to other 300 baud terminals also. If a subsequent null character is
received, the speed is changed back to 150 baud.

The user’s name is terminated by a new-line or carriage-return character. The latter results in the system
being set to to treat carriage returns appropriately (see stty(II)).

The user’s name is scanned to see if it contains any lower-case alphabetic characters; if not, and if the name
is nonempty, the system is told to map any future upper-case characters into the corresponding lower-case
characters. Thus UNIX is usable from upper-case-only terminals.

Finally, login is called with the user’s name as argument.

SEE ALSO

init(VII), login(I), stty(II)

- 1 -



-

GLOB ( VII ) 9/19/73 GLOB ( VII )

NAME

glob − generate command arguments

SYNOPSIS

/etc/glob command [ arguments ]

DESCRIPTION

Glob is used to expand arguments to the shell containing ‘‘*’’, ‘‘[’’, or ‘‘?’’. It is passed the argument list
containing the metacharacters; glob expands the list and calls the indicated command. The actions of glob
are detailed in the Shell writeup.

SEE

sh(I)

BUGS

Glob gives the ‘‘No match’’ diagnostic only if no arguments at all result. This is never the case if there is
any argument without a metacharacter.

- 1 -



-

GREEK ( VII ) 10/31/72 GREEK ( VII )

NAME

greek − graphics for extended ascii type-box

SYNOPSIS

cat /usr/pub/greek

DESCRIPTION

Greek gives the mapping from ascii to the ‘‘shift out’’ graphics in effect between SO and SI on model 37
Teletypes with a 128-character type-box. It contains:

alpha αAbetaβBgammaγ\
GAMMA ΓGdelta∆DDELTA∆W
epsilon εSzetaζQetaηN
theta τTTHETAΤOlambdaλL
LAMBDA ΛEmuµMnuν@
xi ξXpiπJPIΠP
rho ρKsigmaσYSIGMAΣR
tau τIphiφUPHIΦF
psi ψVPSIΨHomegaοC
OMEGA ΩZnabla∇ [not¬
partial ∂]integral∫ˆ

SEE ALSO

ascii (VII)

- 1 -



-

INIT ( VII ) 6/15/72 INIT ( VII )

NAME

init − process control initialization

SYNOPSIS

/etc/init

DESCRIPTION

Init is invoked inside UNIX as the last step in the boot procedure. Generally its role is to create a process
for each typewriter on which a user may log in.

First, init checks to see if the console switches contain 173030. (This number is likely to vary between sys-
tems.) If so, the console typewriter tty is opened for reading and writing and the shell is invoked immedi-
ately. This feature is used to bring up a single-user system. When the system is brought up in this way, the
getty and login routines mentioned below and described elsewhere are not needed.

Otherwise, init invokes a Shell, with input taken from the file /etc/rc. This command file performs house-
keeping like removing temporary files, mounting file systems, and starting the data-phone daemon.

Then init forks several times to create a process for each typewriter mentioned in an internal table. Each of
these processes opens the appropriate typewriter for reading and writing. These channels thus receive file
descriptors 0 and 1, the standard input and output. Opening the typewriter will usually involve a delay,
since the open is not completed until someone is dialled up and carrier established on the channel. Then
the process executes the program /etc/getty (q.v.). Getty will read the user’s name and invoke login (q.v.) to
log in the user and execute the shell.

Ultimately the shell will terminate because of an end-of-file either typed explicitly or generated as a result
of hanging up. The main path of init, which has been waiting for such an event, wakes up and removes the
appropriate entry from the file utmp, which records current users, and makes an entry in wtmp, which main-
tains a history of logins and logouts. Then the appropriate typewriter is reopened and getty is reinvoked.

FILES

/dev/tty, /dev/tty?, /tmp/utmp, /tmp/wtmp,

SEE ALSO

login(I), getty(VII), sh(I)

- 1 -



-

MSH ( VII ) 6/15/72 MSH ( VII )

NAME

msh − mini-shell

SYNOPSIS

/etc/msh

DESCRIPTION

Msh is a heavily simplified version of the Shell. It reads one line from the standard input file, interprets it
as a command, and calls the command.

The mini-shell supports few of the advanced features of the Shell; none of the following characters is spe-
cial:

> < $ \ ; &  ˆ

However, ‘‘*’’, ‘‘[’’, and ‘‘?’’ are recognized and glob is called. The main use of msh is to provide a com-
mand-executing facility for various interactive sub-systems.

SEE ALSO

sh(I), glob(VII)

- 1 -



-

TABS ( VII ) 6/15/72 TABS ( VII )

NAME

tabs − set tab stops

SYNOPSIS

cat /usr/pub/tabs

DESCRIPTION

When printed on a suitable terminal, this file will set tab stops every 8 columns. Suitable terminals include
the Teletype model 37 and the GE TermiNet 300.

These tab stop settings are desirable because UNIX assumes them in calculating delays.

- 1 -



-

TMHEADER ( VII ) 10/20/73 TMHEADER ( VII )

NAME

tmheader − TM cover sheet

SYNOPSIS

ed /usr/pub/tmheader

DESCRIPTION

/usr/pub/tmheader contains a prototype for making a troff(I) formatted cover sheet for a technical memo-
randum. Parameters to be filled in by the user are marked by self-explanatory names beginning with ‘‘---’’.

BUGS

God help you on two-page abstracts. Try to write less.

- 1 -



-

VS ( VII ) 9/4/73 VS ( VII )

NAME

vs − voice synthesizer code

DESCRIPTION

The octal codes below are understood by the Votrax® voice synthesizer. Inflection and phonemes are or-ed
together. The mnemonics in the first column are used by speak (I); the upper case mnemonics are used by
the manufacturer.

0 300 4−strong inflection u0 014 UH−but
1 200 3 u1 015 UH1−uncle
2 100 2 u2 016 UH2−stirrup
3 000 1−weak inflection u3 034 UH3−app le ab le

yu 027 U−use
a0 033 AH−contact iu 010 U1−unite(,y1,iu,...)
a1 052 AH1−connect ju 011 IU−new
aw 002 AW−law(,l,u2,aw) b 061 B
au 054 AW1−fault d 041 D
ae 021 AE−cat f 042 F
ea 020 AE1−antenna g 043 G
ai 037 A−name(,n,ai,y0,m) h 044 H
aj 071 A1−namely k 046 K
e0 004 EH−met enter l 047 L
e1 076 EH1−seven m 063 M
e2 077 EH2−seven n 062 N
er 005 ER−weather p 032 P
eu 073 OOH−Goethe cheveux q 075 Q
eh 067 EHH−le cheveux r 024 R
y0 023 EE−three s 040 S
y1 026 Y−sixty t 025 T
y2 035 Y1−yes v 060 V
ay 036 AY−may w 022 W
i0 030 I−six z 055 Z
i1 064 I1−inept inside sh 056 SH−show ship
i2 065 I2−static zh 070 ZH−pleasure
iy 066 IY−cry(,k,r,a0,iy) j 045 J−edge
ie 003 IE−zero ch 057 CH−batch
ih 072 IH−station th 006 TH−thin
o0 031 O−only no dh 007 THV−then
o1 012 O1−hello ng 053 NG−long ink
o2 013 O2−notice −0 017 PA2−long pause
ou 051 OO1−good should −1 001 PA1
oo 050 OO−look −2 074 PA0−short pause

SEE ALSO

speak(I), vs(IV)

- 1 -



-

20BOOT ( VIII ) 10/31/73 20BOOT ( VIII )

NAME

20boot − install new 11/20 system

SYNOPSIS

20boot

DESCRIPTION

This shell command file copies the current version of the 11/20 program used to run the VT01 display onto
the /dev/vt0 file. The 11/20 should have been started at its ROM location 773000.

FILES

/dev/vt0, /usr/mdec/20.o (11/20 program)

SEE ALSO

vt (IV)

- 1 -



-

BOOT PROCEDURES ( VIII ) 11/1/73 BOOT PROCEDURES ( VIII )

NAME

boot procedures − UNIX startup

DESCRIPTION

The advent of the new system has changed the boot procedures. These procedures apply only to C-lan-
guage systems.

How to start UNIX. UNIX is started by placing it in core starting at location zero and transferring to zero.
There are various ways to do this. If UNIX is still intact after it has been running, the most obvious method
is simply to transfer to zero.

The tp command places a bootstrap program on the otherwise unused block zero of the tape. The DECtape
version of this program is called tboot, the magtape version mboot. If tboot or mboot is read into location
zero and executed there, it will type ‘=’ on the console, read in a tp entry name, load that entry into core,
and transfer to zero. Thus the next easiest way to run UNIX is to maintain the UNIX code on a tape using
tp. Then when a boot is required, execute (somehow) a program which reads in and jumps to the first block
of the tape. In response to the ‘=’ prompt, type the entry name of the system on the tape (we use plain
‘unix’). It is strongly recommended that a current version of the system be maintained in this way, even if
the first or third methods of booting the system are usually used.

The standard DEC ROM which loads DECtape is sufficient to read in tboot, but the magtape ROM loads
block one, not zero. If no suitable ROM is available, magtape and DECtape programs are presented below
which may be manually placed in core and executed.

A third method of rebooting the system involves the otherwise unused block zero of each UNIX file system.
The single-block program uboot will read a UNIX pathname from the console, find the corresponding file
on a device, load that file into core location zero, and transfer to it. The current version of this boot pro-
gram reads a single character (either p or k for RP or RK, both drive 0) to specify which device is to be
searched. Uboot operates under very severe space constraints. It supplies no prompts, except that it echos
a carriage return and line feed after the p or k. No diagnostic is provided if the indicated file cannot be
found, nor is there any means of correcting typographical errors in the file name except to start the program
over. Uboot can reside on any of the standard file systems or may be loaded from a tp tape as described
above.

The standard DEC disk ROMs will load and execute uboot from block zero.

The switches. The console switches play an important role in the use and especially the booting of UNIX.
During operation, the console switches are examined 60 times per second, and the contents of the address
specified by the switches are displayed in the display register. (This is not true on the 11/40 since there is
no display register on that machine.) If the switch address is even, the address is interpreted in kernel (sys-
tem) space; if odd, the rounded-down address is interpreted in the current user space.

If any diagnostics are produced by the system, they are printed on the console only if the switches are non-
zero. Thus it is wise to have a non-zero value in the switches at all times.

During the startup of the system, the init program (VIII) reads the switches and will come up single-user if
the switches are set to 173030.

It is unwise to have a non-existent address in the switches. This causes a bus error in the system (displayed
as 177777) at the rate of 60 times per second. If there is a transfer of more than 16ms duration on a device
with a data rate faster than the bus error timeout (approx 10µs) then a permanent disk non-existent-memory
error will occur.

ROM pro grams. Here are some programs which are suitable for installing in read-only memories, or for
manual keying into core if no ROM is present. Each program is position-independent but should be placed
well above location 0 so it will not be overwritten. Each reads a block from the beginning of a device into
core location zero. The octal words constituting the program are listed on the left.

- 1 -



-

BOOT PROCEDURES ( VIII ) 11/1/73 BOOT PROCEDURES ( VIII )

DECtape (drive 0) from endzone:
012700 mov $tcba,r0
177346
010040 mov r0,-(r0) / use tc addr for wc
012710 mov $3,(r0) / read bn forward
000003
105710 1: tstb (r0) / wait for ready
002376 bge 1b
112710 movb $5,(r0) / read (forward)
000005
000777 br . / loop; now halt and start at 0

DECtape (drive 0) with search:
012700 1: mov $tcba,r0
177346
010040 mov r0,-(r0) / use tc addr for wc
012740 mov $4003,-(r0) / read bn reverse
004003
005710 2: tst (r0)
002376 bge 2b / wait for error
005760 tst -2(r0) / loop if not end zone
177776
002365 bge 1b
012710 mov $3,(r0) / read bn forward
000003
105710 2: tstb (r0) / wait for ready
002376 bge 2b
112710 movb $5,(r0) / read (forward)
000005
105710 2: tstb (r0) / wait for ready
002376 bge 2b
005007 clr pc / transfer to zero

Caution: both of these DECtape programs will (literally) blow a fuse if 2 drives are dialed to zero.

Magtape from load point:
012700 mov $mtcma,r0
172526
010040 mov r0,-(r0) / usr mt addr for wc
012740 mov $60003,-(r0) / read 9-track
060003
000777 br . / loop; now halt and start at 0

RK (drive 0):
012700 mov $rkmr,r0
177414
005040 clr -(r0)
005040 clr -(r0)
010040 mov r0,-(r0)
012740 mov $5,-(r0)
000005
105710 1: tstb (r0)
002376 bge 1b
005007 clr pc

RP (drive 0)
012700 mov $rpmr,r0
176726
005040 clr -(r0)
005040 clr -(r0)

- 2 -



-

BOOT PROCEDURES ( VIII ) 11/1/73 BOOT PROCEDURES ( VIII )

005040 clr -(r0)
010040 mov r0,-(r0)
012740 mov $5,-(r0)
000005
105710 1: tstb (r0)
002376 bge 1b
005007 clr pc

FILES

/usr/sys/unix − UNIX code
/usr/mdec/mboot − tp magtape bootstrap
/usr/mdec/tboot − tp DECtape bootstrap
/usr/mdec/uboot − file system bootstrap

SEE ALSO

tp(I), init(VII)

- 3 -



-

CHECK ( VIII ) 8/31/73 CHECK ( VIII )

NAME

check − file system consistency check

SYNOPSIS

check [ −lsib [ numbers ] ] [ filesystem ]

DESCRIPTION

Check examines a file system, builds a bit map of used blocks, and compares this bit map against the free
list maintained on the file system. It also reads directories and compares the link-count in each i-node with
the number of directory entries by which it is referenced. If the file system is not specified, a check of a de-
fault file system is performed. The normal output of check includes a report of

The number of blocks missing; i.e. not in any file nor in the free list,
The number of special files,
The total number of files,
The number of large files,
The number of directories,
The number of indirect blocks,
The number of blocks used in files,
The highest-numbered block appearing in a file,
The number of free blocks.

The −l flag causes check to produce as part of its output report a list of the all the path names of files on the
file system. The list is in i-number order; the first name for each file gives the i-number while subsequent
names (i.e. links) have the i-number suppressed. The entries ‘‘.’’ and ‘‘..’’ for directories are also sup-
pressed.

The −s flag causes check to ignore the actual free list and reconstruct a new one by rewriting the super-
block of the file system. The file system should be dismounted while this is done; if this is not possible (for
example if the root file system has to be salvaged) care should be taken that the system is quiescent and that
it is rebooted immediately afterwards so that the old, bad in-core copy of the super-block will not continue
to be used. Notice also that the words in the super-block which indicate the size of the free list and of the i-
list are believed. If the super-block has been curdled these words will have to be patched. The −s flag caus-
es the normal output reports to be suppressed.

The occurrence of i n times in a flag argument −ii...i causes check to store away the next n arguments which
are taken to be i-numbers. When any of these i-numbers is encountered in a directory a diagnostic is pro-
duced, as described below, which indicates among other things the entry name.

Likewise, n appearances of b in a flag like −bb...b cause the next n arguments to be taken as block numbers
which are remembered; whenever any of the named blocks turns up in a file, a diagnostic is produced.

FILES

Currently, /dev/rp0 is the default file system.

SEE ALSO

fs (V)

DIAGNOSTICS

There are some self-evident diagnostics like ‘‘can’t open ...’’, ‘‘can’t write ....’’ If a read error is encoun-
tered, the block number of the bad block is printed and check exits. ‘‘Bad freeblock’’ means that a block
number outside the available space was encountered in the free list. ‘‘n dups in free’’ means that n blocks
were found in the free list which duplicate blocks either in some file or in the earlier part of the free list.

An important class of diagnostics is produced by a routine which is called for each block which is encoun-
tered in an i-node corresponding to an ordinary file or directory. These have the form

b# complaint ; i= i# (class )

Here b# is the block number being considered; complaint is the diagnostic itself. It may be

blk if the block number was mentioned as an argument after −b;
bad if the block number has a value not inside the allocatable space on the device, as indicated by the

- 1 -



-

CHECK ( VIII ) 8/31/73 CHECK ( VIII )

devices’s super-block;
dup if the block number has already been seen in a file;
din if the block is a member of a directory, and if an entry is found therein whose i-number is outside

the range of the i-list on the device, as indicated by the i-list size specified by the super-block.
Unfortunately this diagnostic does not indicate the offending entry name, but since the i-number
of the directory itself is given (see below) the problem can be tracked down.

The i# in the form above is the i-number in which the named block was found. The class is an indicator of
what type of block was involved in the difficulty:

sdir indicates that the block is a data block in a small file;
ldir indicates that the block is a data block in a large file (the indirect block number is not available);
idir indicates that the block is an indirect block (pointing to data blocks) in a large file;
free indicates that the block was mentioned after −b and is free;
urk indicates a malfunction in check.

When an i-number specified after −i is encountered while reading a directory, a report in the form

# ino; i= d# (class ) name

where i# is the requested i-number. d# is the i-number of the directory, class is the class of the directory
block as discussed above (virtually always ‘‘sdir’’) and name is the entry name. This diagnostic gives
enough information to find a full path name for an i-number without using the -l option: use −b n to find an
entry name and the i-number of the directory containing the reference to n, then recursively use −b on the i-
number of the directory to find its name.

Another important class of file system diseases indicated by check is files for which the number of directory
entries does not agree with the link-count field of the i-node. The diagnostic is hard to interpret. It has the
form

i# delta

Here i# is the i-number affected. Delta is an octal number accumulated in a byte, and thus can have the val-
ue 0 through 377(8). The easiest way (short of rewriting the routine) of explaining the significance of delta
is to describe how it is computed.

If the associated i-node is allocated (that is, has the allocated bit on) add 100 to delta. If its link-count is
non-zero, add another 100 plus the link-count. Each time a directory entry specifying the associated i-num-
ber is encountered, subtract 1 from delta. At the end, the i-number and delta are printed if delta is neither 0
nor 200. The first case indicates that the i-node was unallocated and no entries for it appear; the second that
it was allocated and that the link-count and the number of directory entries agree.

Therefore (to explain the symptoms of the most common difficulties) delta = 377 (−1 in 8-bit, 2’s comple-
ment octal) means that there is a directory entry for an unallocated i-node. This is somewhat serious and
the entry should be be found and removed forthwith. Delta = 201 usually means that a normal, allocated i-
node has no directory entry. This difficulty is much less serious. Whatever blocks there are in the file are
unavailable, but no further damage will occur if nothing is done. A clri followed by a check −s will restore
the lost space at leisure.

In general, values of delta equal to or somewhat above 0, 100, or 200 are relatively innocuous; just below
these numbers there is danger of spreading infection.

BUGS

Unfortunately, check −l on file systems with more than 3000 or so files does not work because it runs out of
core.

Since check is inherently two-pass in nature, extraneous diagnostics may be produced if applied to active
file systems.

It believes even preposterous super-blocks and consequently can get core images.

- 2 -



-

CLRI ( VIII ) 10/31/73 CLRI ( VIII )

NAME

clri − clear i-node

SYNOPSIS

clri i-number [ filesystem ]

DESCRIPTION

Clri writes zeros on the 32 bytes occupied by the i-node numbered i-number. If the file system argument is
given, the i-node resides on the given device, otherwise on a default file system. The file system argument
must be a special file name referring to a device containing a file system. After clri, any blocks in the af-
fected file will show up as ‘‘missing’’ in a check of of the file system.

Read and write permission is required on the specified file system device. The i-node becomes allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no directory. If it
is used to zap an i-node which does appear in a directory, care should be taken to track down the entry and
remove it. Otherwise, when the i-node is reallocated to some new file, the old entry will still point to that
file. At that point removing the old entry will destroy the new file. The new entry will again point to an un-
allocated i-node, so the whole cycle is likely to be repeated again and again.

BUGS

Whatever the default file system is, it is likely to be wrong. Specify the file system explicitly.

If the file is open, clri is likely to be ineffective.

- 1 -



-

DF ( VIII ) 1/20/73 DF ( VIII )

NAME

df − disk free

SYNOPSIS

df [ filesystem ]

DESCRIPTION

Df prints out the number of free blocks available on a file system. If the file system is unspecified, the free
space on all of the normally mounted file systems is printed.

FILES

/dev/rf?, /dev/rk?, /dev/rp?

SEE ALSO

check(VIII)

BUGS

- 1 -



-

DUMP ( VIII ) 11/24/73 DUMP ( VIII )

NAME

dump − incremental file system dump

SYNOPSIS

dump [ key [ arguments ] filesystem ]

DESCRIPTION

Dump will make an incremental file system dump on magtape of all files changed after a certain date. The
argument key, specifies the date and other options about the dump. Ke y consists of characters from the set
iu0hds.

i the dump date is taken from the file /etc/ddate.

u the date just prior to this dump is written on /etc/ddate upon successful completion of this dump.

0 the dump date is taken as the epoch (beginning of time). Thus this option causes an entire file system
dump to be taken.

h the dump date is some number of hours before the current date. The number of hours is taken from
the next argument in arguments.

d the dump date is some number of days before the current date. The number of days is taken from the
next argument in arguments.

s the size of the dump tape is specified in feet. The number of feet is taken from the next argument in
arguments. It is assumed that there are 9 standard UNIX records per foot. When the specified size is
reached, the dump will wait for reels to be changed. The default size is 1700 feet.

If no arguments are given, the key is assumed to be i and the file system is assumed to be /dev/rp1.

Full dumps should be taken on quiet file systems as follows:

dump 0u /dev/rp1
check -l /dev/rp1

The check will come in handy in case it is necessary to resore indiviidual files from this dump. Incremental
dumps should then be taken when desired by:

dump

When the incremental dumps get cumbersome, a new complete dump should be taken. In this way, a re-
store requires loading of the complete dump tape and only the latest incremental tape.

FILES

/dev/mt0magtape
/dev/rp1default file system
/etc/ddate

SEE ALSO

restor, check(VIII), dump(V)

BUGS

- 1 -



-

INO ( VIII ) 11/1/73 INO ( VIII )

NAME

ino − get the i-number of a file

SYNOPSIS

ino file ...

DESCRIPTION

The i-number of each file argument is printed. An i-number of zero is printed if a bad argument is given.

BUGS

- 1 -



-

MKFS ( VIII ) 11/1/73 MKFS ( VIII )

NAME

mkfs − construct a file system

SYNOPSIS

/etc/mkfs special proto

DESCRIPTION

Mkfs constructs a file system by writing on the special file special according to the directions found in the
prototype file proto. The prototype file contains tokens separated by spaces or new lines. The first token is
the name of a file to be copied onto block zero as the bootstrap program (see boot procedures(VIII)). The
second token is a number specifying the size of the created file system. Typically it will be the number of
blocks on the device, perhaps diminished by space for swapping. The next token is the i-list size in blocks
(remember there are 16 i-nodes per block). The next set of tokens comprise the specification for the root
file. File specifications consist of tokens giving the mode, the user-id, the group id, and the initial contents
of the file. The syntax of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file. (The char-
acters −bcd specify regular, block special, character special and directory files respectively.) The second
character of the type is either u or − to specify set-user-id mode or not. The third is g or − for the set-
group-id mode. The rest of the mode is a three digit octal number giving the owner, group, and foreigner
read, write, execute permissions (see chmod (I)).

Tw o decimal number tokens come after the mode; they specify the user and group ID’s of the owner of the
file.

If the file is a regular file, the next token is a pathname whence the contents and size are copied.

If the file is a block or character special file, two decimal number tokens follow which give the major and
minor device numbers.

If the file is a directory, mkfs makes the entries . and .. and then reads a list of names and (recursively) file
specifications for the entries in the directory. The scan is terminated with the token $.

If the prototype file cannot be opened and its name consists of a string of digits, mkfs builds a file system
with a single empty directory on it. The size of the file system is the value of proto interpreted as a decimal
number. The i-list size is the file system size divided by 50. (This corresponds to an average size of three
blocks per file.) The boot program is left uninitialized.

A sample prototype specification follows:

/usr/mdec/uboot
4872 55
d−−777 3 1
usr d−−777 3 1

sh −−−755 3 1 /bin/sh
ken d−−755 6 1

$
b0 b−−644 3 1 0 0
c0 c−−644 3 1 0 0
$

$

SEE ALSO

file system(V), directory(V), boot procedures(VIII)

DIAGNOSTICS

There are various diagnostics for syntax errors, inconsistent values, and sizes too small.

BUGS

It is not possible to initialize a file larger than 64K bytes.
The size of the file system is restricted to 64K blocks.
There should be some way to specify links.

- 1 -



-

MKNOD ( VIII ) 10/31/73 MKNOD ( VIII )

NAME

mknod − build special file

SYNOPSIS

/etc/mknod name [ c ] [ b ] major minor

DESCRIPTION

Mknod makes a directory entry and corresponding i-node for a special file. The first argument is the name
of the entry. The second is b if the special file is block-type (disks, tape) or c if it is character-type (other
devices). The last two arguments are numbers specifying the major device type and the minor device (e.g.
unit, drive, or line number).

The assignment of major device numbers is specific to each system. For reference, here are the numbers
for the MH 2C-644 machine. Do not believe them too much.

Block devices:
0 RF fixed-head disk
1 RK moving-head disk
2 TC DECtape
3 TM magtape
4 RP moving-head disk
5 Vermont Research moving-head disk

Character devices:
0 KL on-line console
1 DC communications lines
2 PC paper tape
3 DP synchronous interface
4 DN ACU interface
5 core memory
6 VT scope (via 11/20)
7 DA voice response unit
8 CT phototypesetter
9 VS voice synthesizer
10 TIU Spider interface

SEE ALSO

mknod (II)

BUGS

- 1 -



-

MOUNT ( VIII ) 10/31/73 MOUNT ( VIII )

NAME

mount − mount file system

SYNOPSIS

/etc/mount special file

DESCRIPTION

Mount announces to the system that a removable file system is present on the device corresponding to spe-
cial file special (which must refer to a disk or possibly DECtape). The file must exist already; it becomes
the name of the root of the newly mounted file system.

SEE ALSO

umount (VIII)

BUGS

Mounting file systems full of garbage can crash the system.

- 1 -



-

RELOC ( VIII ) 2/7/73 RELOC ( VIII )

NAME

reloc − relocate object files

SYNOPSIS

reloc file octal [ − ]

DESCRIPTION

Reloc modifies the named object program file so that it will operate correctly at a different core origin than
the one for which it was assembled or loaded.

The new core origin is the old origin increased by the given octal number (or decreased if the number has a
‘−’ sign).

If the object file was generated by ld, the −r and −d options must have been given to preserve the relocation
information and define any common symbols in the file.

If the optional last argument is given, then any setd instruction at the start of the file will be replaced by a
no-op.

The purpose of this command is to simplify the preparation of object programs for systems which have no
relocation hardware. It is hard to imagine a situation in which it would be useful to attempt directly to exe-
cute a program treated by reloc.

SEE ALSO

as(I), ld(I), a.out(V)

BUGS

- 1 -



-

RESTOR ( VIII ) 11/24/73 RESTOR ( VIII )

NAME

restor − incremental file system restore

SYNOPSIS

restor key [ arguments ]

DESCRIPTION

Restor is used to read magtapes dumped with the dump command. The key argument specifies what is to be
done. Ke y is a character from the set trxw.

t The date that the tape was made and the date that was specified in the dump command are printed. A
list of all of the i-numbers on the tape are also given.

r The tape is read and loaded into the file system specified in arguments. This should not be done
lightly (see below).

x Each file on the tape is individually extracted into a file whose name is the file’s i-number. If there
are arguments, they are interpreted as i-numbers and only they are extracted.

w In conjunction with the x option, before each file is extracted, its i-number is typed out. To extract
this file, you must respond with y.

The r option should only be used to restore a complete dump tape onto a clear file system or to restore an
incremental dump tape onto this. Thus

/etc/mkfs /dev/rp0 40600
restor r /dev/rp0

is a typical sequence to restore a complete dump. Another restor can be done to get an incremental dump
in on top of this.

A dump followed by a mkfs and a restor is used to change the size of a file system.

FILES

/dev/mt0

SEE ALSO

dump, mkfs, check, clri (VIII)

DIAGNOSTICS

There are various diagnostics involved with reading the tape and writing the disk. There are also diagnos-
tics if the i-list or the free list of the file system is not large enough to hold the dump.

BUGS

There is redundant information on the tape that could be used in case of tape reading problems. Unfortu-
nately, restor’s approach is to exit if anything is wrong.

Files that have been deleted are not removed when incremental tapes are loaded. It will be necessary to
check the restored file system and clri any files that show up with a 201 delta diagnostic.

The current version of restor does not free space occupied by files that are overwritten. Thus a check will
have to be performed to reclain the missing space.

- 1 -



-

SU ( VIII ) 10/31/73 SU ( VIII )

NAME

su − become privileged user

SYNOPSIS

su

DESCRIPTION

Su allows one to become the super-user, who has all sorts of marvelous (and correspondingly dangerous)
powers. In order for su to do its magic, the user must supply a password. If the password is correct, su will
execute the Shell with the UID set to that of the super-user. To restore normal UID privileges, type an end-
of-file to the super-user Shell.

The password demanded is that of the entry ‘‘root’’ in the system’s password file.

To remind the super-user of his responsibilities, the Shell substitutes ‘#’ for its usual prompt ‘%’.

SEE ALSO

sh (I)

- 1 -



-

SYNC ( VIII ) 11/1/73 SYNC ( VIII )

NAME

sync − update the super block

SYNOPSIS

sync

DESCRIPTION

Sync executes the sync system primitive. If the system is to be stopped, sync must be called to insure file
system integrity. See sync(II) for details.

SEE ALSO

sync(II)

BUGS

- 1 -



-

UMOUNT ( VIII ) 10/31/73 UMOUNT ( VIII )

NAME

umount − dismount file system

SYNOPSIS

/etc/umount special

DESCRIPTION

Umount announces to the system that the removable file system previously mounted on special file special
is to be removed.

SEE ALSO

mount (VIII)

DIAGNOSTICS

It complains if the special file is not mounted or if it is busy. The file system is busy if there is an open file
on it or if someone has his current directory there.

BUGS

- 1 -



-

UPDATE ( VIII ) 11/1/73 UPDATE ( VIII )

NAME

update − periodically update the super block

SYNOPSIS

update

DESCRIPTION

Update is a program that executes the sync primitive every 30 seconds. This insures that the file system is
fairly up to date in case of a crash. This command should not be executed directly, but should be executed
out of the initialization shell command file. See sync(II) for details.

SEE ALSO

sync(II), init(VII)

BUGS

There is a system bug which, it is suspected, may be aggravated by this program. Until further notice, up-
date should not be run.

- 1 -


